首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PRELIMINARY APPLICATION OF FOCAL MECHANISM SOLUTIONS OF SMALL AND MEDIUM-SIZE EARTHQUAKES TO FAULT STABILITY ANALYSIS IN THE SOUTHEASTERN TIBETAN PLATEAU
Authors:WANG Hui  CAO Jian-ling  XU Hua-chao
Institution:Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China
Abstract:Analysis of stress state of faults is helpful to understand crustal mechanical properties and seismicity. In the paper, we invert the horizontal crustal stress field in the southeastern Tibetan plateau using focal mechanism solutions of small and medium-size earthquakes, and apply them to estimate the stability of regional major faults. Firstly, we collect focal mechanism solutions of small and medium-sized earthquakes in the southeastern Tibetan plateau. The dataset includes more than 1 000 focal mechanism solutions in the past twenty years. Magnitudes of these earthquakes vary from M3.0 to M6.0. Most of the focal mechanism solutions were determined using waveform inversion technique. Although most of focal mechanism solutions in the southeastern Tibetan plateau are strike-slip faulting, their spatial pattern is different in sub-regions. Normal faulting earthquakes mainly occurred in the western Sichuan region, reverse faulting earthquakes mainly occurred in the boundary zone between the Tibetan plateau and the South China craton, and strike-slip faulting earthquakes mainly occurred in the central and southern Yunnan region. Next, we settle on a mesh with grid spacing of 0.5° in longitude and latitude in the region and invert the horizontal crustal stress field at each grid point. Spatial variation of the maximum principal stress axis in the southeastern Tibetan plateau shows a clockwise rotation around the eastern Himalaya syntax. The azimuth of maximum compressional stress axis is about 88.1° in the western Sichuan region, about 124.6° in the South China craton, and about 21.6° in the western and southern Yunnan region. The azimuth of regional maximum compressional stress is nearly parallel to the direction of terrain elevation gradient, and that of the minimum compressional stress is nearly parallel to the tangential direction of the topographic elevation contours. The spatial pattern reflects the control role of gravity spreading of the Tibetan plateau on the regional horizontal stress field. Finally, we analyzed regional fault stability based on these collected focal mechanism solutions. The fault instability parameter (I) is defined based on the Mohr-Coulomb criterion and indicates the degree of fault approximating to rupture. The instability parameters on fourteen major faults in the southeastern Tibetan plateau were calculated. Our results show that the stability of the Lianfeng-Zhaotong Fault is the lowest before 2014 in the region, which indicates the fault zone is close to rupture at that time. Our results provide a new useful tool to assess regional seismic potential using dense focal mechanism solutions.
Keywords:southeastern Tibetan plateau  focal mechanism  crustal stress field  inversion  fault stability  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号