首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SIMULATION STUDY OF ROAD-CUT EFFECTS ON SLOPE STABILITY
Authors:CHEN Xiao-li  WANG Ming-ming  ZHANG Ling
Institution:1.Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029, China;2.Sichuan Earthquake Agency, Chengdu 610041, China;3.National Earthquake Response Support Service, Beijing 100049, China
Abstract:Landslides and rock falls along the highway are common geological hazards in Southwest China. As an influencing factor on potential landslides behavior, roads or distance to roads have been successfully used in landslide susceptibility assessments in mountainous area. However, the relationship between the road-cut and the slope stability is not clear. Therefore, we performed two-dimensional slope stability calculation using the general limit equilibrium (GLE)method incorporated in the software SLOPE/W of GeoStudio for stability analysis of slopes. Our studies show that the man-made roads influence on the slope stability mainly exists in two ways:One is to create a new steep slope, which will result in rock falls and shallow landslides along the roads; the other is to influence the stability of the original slope, which will result in comparatively huge landslides. For the latter, our simulation study reveals that the road location, namely at which part of a natural slope to construct a road is important for the slope stability. For a natural slope with a potential slip surface, if a road is constructed at or near the slope toe where the potential slip surface surpasses, it will greatly degrade the slope's factor of safety (Fs) and make the slope unstable; however, if a rode-cut is near the top of the slope, it will increase the slope's Fs and make the slope more stable. The safety location is different for different slope angle, steeper slope needs a higher location for a safety road-cut in comparison with gentle slopes. Moreover, the slope stability decreases when loading a seismic force and it varies with the slope angle. Firstly, the Fs decreases when the slope angle increasing, and when the slope angle reaches 45°, the Fs then becomes greater with the slope angle increasing.
Keywords:slope stability  road-cut  limit equilibrium method  factor of safety(Fs)  seismic loading  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号