首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CORRELATION BETWEEN GAS GEOCHEMICAL EMISSION AND FAULT ACTIVITY OF THE YUXIAN-GUANGLING AND KOUQUAN FAULTS
Authors:ZHAO Jian-ming  LI Ying  CHEN Zhi  LIU Zhao-fei  ZHAO Rong-qi  RONG Wei-jian
Institution:1.CEA Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, Beijing 100036, China;2.Tangshan Central Seismic Station, Hebei Earthquake Agency, Tangshan 063000, China;3.Tangshan Earthquake Memorial, Tangshan 063000, China
Abstract:Soil gas emission is closely related to tectonic and seismic activity and has been widely used to track active faults and monitor seismicity in the upper crust. Because active fault plays an important role as the channel of the earth's deep gas upward migration due to its high permeability and porosity, the geochemical characteristics of soil gas in fault zone is a good indicator of tectonic fracture and activity. In order to study the soil gas geochemical emission intensities and its correlation to fault activity, fluxes of Rn, Hg and CO2 in soil gas and the ground resistivity were surveyed across the Yuxian-Guangling Fault and Kouquan Fault which are both Quaternary active faults in the border area of Shanxi Province, Hebei Province and Inner Mongolia Autonomous Region. In 2017, soil gas fluxes were measured in 2 profiles consisting of 10 and 9 wells of depth of 3.0m across the fault scarps in Yuxian-Guangling Fault and Kouquan Fault, respectively. Resistivity tomography sections were attained by ground resistivity survey with electrode spacing of 5.0m along the profiles of soil gas measurement. The gas geochemical data show that there exist two abnormal flux peaks across the Yuxian-Guangling Fault and one in the Kouquan Fault. The high density resistivity measurement shows that fault breccia and fractured rocks zones are developed under the measured faults, where higher values of soil gas flux are also observed. Fractures with high gas permeability in the strata favor the transfer and migration upward of soil gases, which results in the anomalies of gas flux value. In addition, the anomalies of gas flux values are spatially identical with the occurrence of the fault scarps. The soil gas degassing rate of Yuxian-Guangling Fault is higher than that of Kouquan Fault. The research results of high density electrical prospecting and previous tectonic activity show that low-resistance bodies are more developed and the fault activity is stronger with higher slip rate, which leads to the more intense emission of soil gas in Yuxian-Guangling Fault. The conclusions can be made that soil gas geochemical characteristics and degassing rate in fault zone is closely correlated to the tectonic activity and fracture degree. Combination of geochemical and geophysical methods is an efficient way for the monitoring and study of fault activity to estimate the possible earthquake hazards.
Keywords:soil gas flux  high-density resistivity method  fault activity  fault structure  degassing rate  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号