首页 | 本学科首页   官方微博 | 高级检索  
     检索      


INFLUENCES OF OBLIQUITY ANGLE DIFFERENCE ON THE EVOLUTION OF FEN-WEI RIFT: A STUDY FROM SEGMENTED TRANSTENSION CLAY MODEL
Authors:ZHUO Yan-qun  S A Bornyakov  GUO Yan-shuang  MA Jin  S I Sherma
Institution:1. State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2. Institute of the Earth's Crust, Siberian Branch, Russian Academy of Sciences, St. 128 Lermontova, Irkutsk 664033, Russia; 3. Department of Civil Engineering, University of Toronto, Toronto M5S1A4, Canada
Abstract:The Fen-Wei rift is composed of a series of Cenozoic graben basins, which extends in an S-shape and strikes mainly NNE. Two distinct types of basins are defined in the Fen-Wei rift. The NEE-striking basins(or basin system) are bounded by active faults of mainly normal slip while the NNE-striking basins are characterized by their dextral strike-slip boundary faults. The adjacent NEE-striking basins(or basin systems) are linked by the arrangement of NNE-striking basins and horsts that is called the linking zone in this study. The segmentation of the Fen-Wei rift shows that the geometry and the activity of different rift segments are varied. The southern and northern rift segments strike NEE and are characterized by tensile movement while the central rift segment strikes NNE with transtensional motion. Previous field surveys show that the ages of the Cenozoic basins in the Fen-Wei rift are old in the southern rift segment, medium in the northern rift segment, and young in the central rift segment. The sizes of linking zones are large in the central rift segment, medium in the northern rift segment, and small in the southern rift segment. In addition, the east tip of Xinding Basin propagates towards NEE along the northern rift segment and the west tip of the basin grows towards NNE, while the shape of Linfen Basin is almost antisymmetric with respect to the Xinding Basin. However, the previous laboratory or numerical simulations cannot explain these features because they didn't pay enough attention to the control of the rift segmentation on the evolution of NEE-striking basins and their linking zones. In this study, based on the previous field studies, we study the fracture process of a clay layer under the segmented dextral transtension of the basement. The spatiotemporal evolution of the deformation field of the clay layer is quantitatively analyzed via a digital image correlation method. The experiment reproduced the main architecture of the Fen-Wei rift. The results show that:(1) The chronological order of basin initiation and the different sizes of linking zones in deferent rift segments are caused by the different obliquity angles(the angle between the rift trend and the displacement direction between the opposite sides of the rift) among the southern, northern and central rift segments.(2) The interaction between adjacent NEE-striking basins leads to the formation of NNE-striking linking zones.(3) The interaction between adjacent rift segments may cause the special distribution of Xinding and Linfen Basins. Thus, we propose that the differences of the Fen-Wei rift segments are mainly controlled by the different obliquity angles. The lack of considering the influences of pre-exiting structures leads to the limited simulation of the details within the southern and northern segments of the Fen-Wei rift. Further studies may improve the model if this is taken into account.
Keywords:obliquity angle  basin interaction  rift segment interaction  spatiotemporal evolution of deformation field  Fen-Wei rift  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号