首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal/silicate fractionation in the solar system
Authors:John S Lewis
Institution:1. Planetary Astronomy Laboratory, Department of Earth and Planetary Sciences, Cambridge, Mass. 02139, USA;2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA
Abstract:Fractionation between the metal and silicate components of objects in the inner solar system has long been recognized as a necessity in order to explain the observed density variations of the terrestrial planets and the H-group, L-group dichotomy of the ordinary chondrites. This paper discusses the densities of the terrestrial planets in light of current physical and chemical models of processes in the solar nebula. It is shown that the observed density trends in the inner solar system need not be the result of special fractionation processes, and that the densities of the planets may be direct results of simultaneous application of both physical and chemical restraints on the structure of the nebula, most notably the variation of temperature with heliocentric distance. The density of Mercury is easily attributed to accretion at temperatures so high that MgSiO3 is only partially retained but Fe metal is condensed. The densities of the other terrestrial planets are shown to be due to different degrees of retention of S, O and H as FeS, FeO and hydrous silicates produced in chemical equilibrium between condensates and solar-composition gases. It is proposed that Mercury and Venus Have cores of Fe0, Earth has a core of Fe0 containing substantial amounts of FeS, and Mars has a quite small core of FeS with more FeO in its mantle than in Earth's. Geophysical and geochemical consequences of these conclusions are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号