首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magma migration beneath an ocean ridge
Authors:JL Ahern  DL Turcotte
Institution:Department of Geological Sciences, Cornell University, Ithaca, NY 14853U.S.A.
Abstract:Basaltic volcanism which forms the oceanic crust at mid-ocean ridges is the result of pressure release melting associated with ascending mantle convection. We present a model that gives the distribution of melting beneath the ridge and the subsequent migration of magma through the asthenosphere. In order to produce the degree of partial melting associated with the basaltic rocks making up the ocean crust, melting must extend to a depth of at least 70 km. Small degrees of partial melting are expected to result in an interconnected permeability along grain intersections. Due to the differential buoyancy of the magma relative to the residual solid the magma will be rapidly driven upwards. Solid-state creep allows the solid matrix to collapse as the magma migrates upwards and the lithostatic pressure in the matrix is nearly equal to the fluid pressure in the magma. The percentage partial melt present is only slightly greater than that necessary for the development of interconnected permeability and is much less than the degree of partial melting. The first partial melt fraction produced at the greatest depths migrates upwards and mixes with the later partial melt fractions produced at shallower depths. The uniformity of this mixing will have a profound effect on the chemistry of the basalts of the oceanic crust.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号