首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electrical conductivity of magmatic liquids: effects of temperature,oxygen fugacity and composition
Authors:Harve S Waff  Daniel F Weill
Institution:Hoffman Laboratory, Harvard University, Cambridge, Mass. ,USA;Department of Geology, University of Oregon, Eugene, Ore. ,USA
Abstract:The effects of temperature, fO2 and composition on the electrical conductivity of silicate liquids have been experimentally determined from 1200 to 1550°C under a range of fO2 conditions sufficient to change the oxidation state of Fe from predominantly Fe2+ to Fe3+. Oxidation of ferrous to ferric iron in the melt has no measurable effect on the conductivity of melts with relatively low ratios of divalent to univalent cations. Under strongly oxidizing conditions a minor decrease of conductivity is detected inth highΣM2/ΣM+ ratios. It is concluded that for purposes of estimating the conductivity of magmatic liquids, fO2 may be ignored to a first approximation. Both univalent and divalent cation transport is involved in electrical conduction. Melts relying heavily on divalent cations for conduction, i.e. melts with relatively large ΣM2+/ΣM+ ratios, show strong departures from Arrheenius temperature dependence with the apparent activation energies decreasing steadily as the temperature increases. Conductivities dominated by the univalent cations, in melts with relatively small ΣM2+/ΣM+ ratios, show classical Arrhenius temperature dependence. These observations are discussed in terms of the general characteristics of the melt structure.Compositional variations within the magmatic range account for much less than an order of magnitude variation in electrical conductivity at a fixed temperature. This observation, combined with previous measurements of the conductivity of olivine (A. Duba, H.C. Heard and R. Schock, 1974) make it possible to state with reasonable confidence that melts occurring within the mantle will be more conductive by 3–4 orders of magnitude than their refractory residues. Potential applications to geothermometry are discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号