首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake
摘    要:Based on three continuous in situ underwater light field measurement under different wind waves conditions in Longgan Lake, Meiliang Bay of Taihu Lake in July 2003 and littoral zone near TLLER in July 2004, respectively, the effects of sediment resuspension caused by wind waves on PAR diffuse attenuation, absorption coefficients and euphotic depths are analyzed. In Longgan Lake, PAR diffuse attenuation coefficients during small, middle and large wind waves were 1.74, 2.02 and 2.45 m-1, respectively, and the corresponding PAR spectral diffuse attenuations ranged from 0.98 to 2.97, 1.34 to 3.95 and 1.80 to 5.40 m-1, respectively. In Meiliang Bay, PAR diffuse attenuation coefficients were 2.63, 3.72, 4.37 m-1 during small, middle and large wind waves. PAR diffuse attenuation coefficients increased by 41% and 66% from small to middle, large wind waves, respectively. Absorption coefficients integrated over the range of PAR of CDOM, phytoplankton were 0.26, 0.28 m-1; 0.76, 0.49 m-1, respectively during middle and large wind waves. Absorption coefficients integrated over the range of PAR of non-algal particulate matter and total suspended particulate matter increased from 0.94 to 1.73 m-1, and from 1.70 to 2.22 m-1, respectively during middle and large wind waves. Relative contributions of absorption coefficients of non-algal particulate matter to total absorption coefficient integrated over the range of PAR were 44.14%, 65.05%, respectively, during middle and large wind waves. PAR euphotic depths decreased by 0.40, 0.19, 0.20 m from middle to large wind waves in Longganhu Lake, Meliang Bay and littoral zone near TLLER. Significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and total suspended paniculate matter, wind velocity, wave height. Most significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and inorganic suspended paniculate matter but low correlations for chlorophyll a, dissolved organic carbon. Increase of total suspended paniculate matter, especially inorganic suspended paniculate matter caused by wind waves was the dominant factor affecting underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River based on observations at three stations.


Effect of sediment resuspension on underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River: A case study in Longgan Lake and Taihu Lake
Authors:ZHANG Yunlin  QIN Boqiang  ZHU Guangwei  GAO Guang  LUO Liancong  CHEN Weimin
Abstract:Based on three continuous in situ underwater light field measurement under different wind waves conditions in Longgan Lake, Meiliang Bay of Taihu Lake in July 2003 and littoral zone near TLLER in July 2004, respectively, the effects of sediment resuspension caused by wind waves on PAR diffuse attenuation, absorption coefficients and euphotic depths are analyzed. In Longgan Lake, PAR diffuse attenuation coefficients during small, middle and large wind waves were 1.74, 2.02 and 2.45 m-1, respectively, and the corresponding PAR spectral diffuse attenuations ranged from 0.98 to 2.97, 1.34 to 3.95 and 1.80 to 5.40 m-1, respectively. In Meiliang Bay, PAR diffuse attenuation coefficients were 2.63, 3.72, 4.37 m-1 during small, middle and large wind waves. PAR diffuse attenuation coefficients increased by 41% and 66% from small to middle, large wind waves, respectively. Absorption coefficients integrated over the range of PAR of CDOM, phytoplankton were 0.26, 0.28 m-1; 0.76, 0.49 m-1, respectively during middle and large wind waves. Absorption coefficients integrated over the range of PAR of non-algal particulate matter and total suspended particulate matter increased from 0.94 to 1.73 m-1, and from 1.70 to 2.22 m-1, respectively during middle and large wind waves. Relative contributions of absorption coefficients of non-algal particulate matter to total absorption coefficient integrated over the range of PAR were 44.14%, 65.05%, respectively, during middle and large wind waves. PAR euphotic depths decreased by 0.40, 0.19, 0.20 m from middle to large wind waves in Longganhu Lake, Meliang Bay and littoral zone near TLLER. Significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and total suspended paniculate matter, wind velocity, wave height. Most significant correlations were found between transparency, PAR diffuse attenuation coefficients, euphotic depths and inorganic suspended paniculate matter but low correlations for chlorophyll a, dissolved organic carbon. Increase of total suspended paniculate matter, especially inorganic suspended paniculate matter caused by wind waves was the dominant factor affecting underwater light field in shallow lakes in the middle and lower reaches of the Yangtze River based on observations at three stations.
Keywords:shallow lake  Taihu Lake  diffuse attenuation coefficient  absorption coefficient  total suspended particulate matter  
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号