首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry
Authors:ZhiHong Chen  KunYi Guo  YongGuan Dong  Rong Chen  LongMing Li  YiHong Liang  ChunHai Li  XiMing Yu  Ling Zhao  GuangFu Xing
Institution:(1) Nanjing Institute of Geology and Mineral Resources, Nanjing, 210016, China;(2) Department of Earth Sciences, The University of Hong Kong, Hong Kong, China;(3) College of Earth Sciences, Jilin University, Changchun, 130026, China;(4) Zhejiang Pingtong Gorporation, Shaoxing, 310520, China
Abstract:We report here geochemical data, U-Pb zircon ages, and Hf isotopes for the high-Mg diorites (HMDs), Nb-enriched basaltic porphyrys (NEBPs) and plagiogranites (PLAGs) in the Pingshui segment of the Jiangshan-Shaoxing suture zone. The HMDs are characterized by high Mg# (>60), high Na and LREE contents, depletion of HREE and HFSE, and pronounced positive εNd(t) values of 7.0 to 7.7, similar to some adakitic high-Mg andesites. The NEBPs are relatively Na-rich (Na2O/K2O>6) and display high abundances of P2O5 (∼1.00%), TiO2 (∼3.08%) and HFSE (e.g., Nb=9.53–10.27 ppm). Their Nd isotopic compositions (εNd(t)=6.8–8.0) are comparable to those of the HMDs. The PLAGs are metaluminous (A/CNK=0.84–0.89) and sodic (Na2O/K2O>10). Their depletion in HFSE (e.g., Nb, Ta) is consistent with “SSZ-type” plagiogranite. Zircon LA-ICP-MS U-Pb dating yields an age of 932±7 Ma for the HMD, 916±6 Ma for the NEBP, and 902±5 Ma for the PLAG, respectively, indicating that they were products of early Neoproterozoic magmatism. The PLAGs exhibit relatively high zircon Hf isotopes and positive εHf(t) values of 11.0 to 16.2, consistent with their Nd isotopic data (εNd(t)=7.5–8.4). Such features are similar to those of oceanic plagiogranites in ophiolites and distinct from those of crust-derived granites. The PLAGs were most likely derived from partial melting of subducted oceanic crust in an active continental margin. Considering these results in the context of the regional geology, we suggest that a slab window in the subducting oceanic crust between the Yangtze Block and Cathaysia Block was possibly the principal cause for the unique arc magmatism in the area. The upwelling asthenosphere below the slab window may have provided significant thermodynamic conditions. Supported by China Geological Survey (Grant No. 1212010610611) and the Ministry of Land and Resources (Grant No. 200811015)
Keywords:zircon LA-ICP-MS U-Pb dating  geochemistry  slab window  early Neoproterozoic  Pingshui of Shaoxing  Jiangshan-Shanxing suture zone
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号