首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photosynthetic pigment changes and adaptations in biofilms in response to flow intermittency
Authors:Xisca Timoner  Teresa Buchaca  Vicenç Acuña  Sergi Sabater
Institution:1. Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003, Girona, Spain
2. Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17071, Girona, Spain
3. Centre for Advanced Studies of Blanes, CEAB-CSIC, Accés a la Cala St. Francesc 14, 17300, Blanes, Spain
Abstract:Among the environmental factors affecting benthic algae and cyanobacteria in streams, the one often producing the largest effects is flow intermittency. This study aimed to characterize the responses of algal assemblages to flow intermittency in a Mediterranean intermittent stream during the drying, non-flow (112 days), and rewetting phases. Algae growing in the epilithic, epipsammic and hyporheic streambed compartments were analyzed for pigment composition, and for the existence of structural changes in cells. Chlorophyll-a concentrations decreased between 60 to 90 % during the non-flow phase, indicating low resistance of algal assemblages to desiccation. In contrast, fast recoveries of Chlorophyll-a when flow resumed indicated high resilience. Pigment composition revealed that the epilithic algal assemblage was considerably different than the epipsammic and hyporheic ones. These differences were mainly attributed to the physical conditions prevailing on each streambed compartment that allowed the growth of different algal assemblages. During the non-flow phase, the synthesis of protective carotenoids (i.e. echinenone and scytonemin) and the occurrence of cell resistance structures (i.e. enlarged membrane thickness and resistant spores) enhanced resistance of the epilithic biofilm. The resistance observed in the epilithic biofilm might also be related to the tightly adhered growth-form of algae on this substratum. Main results suggest that algal assemblages in the epilithic compartment, which were the most exposed to desiccation, were structurally and functionally better adapted to flow interruption than those colonizing other streambed compartments, and that this compartment plays a crucial role in maintaining ecosystem functions under varying flow periods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号