首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mobility-dependent response of aquatic animal species richness to a wetland network in an agricultural landscape
Authors:Nobuo Ishiyama  Takumi Akasaka  Futoshi Nakamura
Institution:1. Department of Forest Science, Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
Abstract:Management of wetland connectivity is important for biodiversity conservation. In the modern agricultural landscape, the natural connections between floodplain wetlands have been greatly altered. Agricultural ditches and channelized streams are widely distributed in floodplains, which may contribute to the maintenance of wetland connectivity and biodiversity. To determine how these watercourse networks affect wetland biodiversity, we examined the relationship between the species richness of aquatic animals and wetland connectivity, with a special focus on species mobility. From July to August 2011, fish and aquatic insects were collected from 24 wetlands in northern Japan. To determine the degree of wetland connectivity, we assessed the relative importance of individual wetlands in maintaining the entire wetland network using two connectivity indices: hydrologic connectivity via watercourses and spatial connectivity defined as Euclidian distances between wetlands using graph theory. We found that only high mobility groups of both taxa could enhance species richness in either a hydrologic (fish) or spatial (insect) wetland network. The species richness of insects with high-flying ability was found to increase as spatial connectivity increased. Furthermore, the species richness of fish with high-swimming ability was positively influenced by hydrologic connectivity, most likely because highly mobile species were able to reach suitable habitats and migrate from source populations in a wetland network owing to their good mobility. Our findings indicate that hydrologic network is important for maintaining biodiversity as well as spatial connectivity. It is important to focus conservation efforts on key wetlands with high hydrologic and spatial connectivity in future wetland management.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号