首页 | 本学科首页   官方微博 | 高级检索  
     检索      

动荷载作用下粉煤灰改性黄土的震陷特性
引用本文:王峻,高中南,车高凤,钟秀梅,王强,王平,王谦,柴少峰.动荷载作用下粉煤灰改性黄土的震陷特性[J].西北地震学报,2016,38(5):751-756.
作者姓名:王峻  高中南  车高凤  钟秀梅  王强  王平  王谦  柴少峰
作者单位:中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000,中国地震局兰州地震研究所, 甘肃 兰州 730000;中国地震局黄土地震工程重点实验室, 甘肃 兰州 730000;甘肃省岩土防灾工程技术研究中心, 甘肃 兰州 730000
基金项目:中国地震局地震预测研究所基本科研业务费项目(2014IESLZ02,2012IESLZ02);甘肃省自然科学基金资助项目(1308RJZA153);国家自然科学基金(51408567)
摘    要:针对黄土地区实现工程施工材料本土化和科学利用粉煤灰问题,对不同配比条件下粉煤灰改性黄土进行重塑非饱和试件的动三轴震陷试验,研究其在动荷载作用下的震陷特性,分析粉煤灰掺入量对动变形模量和动残余应变的影响变化规律。研究结果表明:粉煤灰掺入量对黄土震陷性质的影响较大。相同固结应力水平下,动变形模量和动残余应变随粉煤灰掺入量呈现出不同的变化规律,随着粉煤灰掺入量的增加,黄土动变形模量也随之增大,残余应变则减小。动变形模量与动残余应变之间的变化趋势满足幂函数关系;黄土掺加约20%粉煤灰改性后就能够有良好的抗震陷性能。研究成果可为黄土地区地基的抗震防震设计提供借鉴依据,具有重要的工程实用价值。

关 键 词:粉煤灰  黄土  震陷特性  动变形模量  动残余应变
收稿时间:2016/3/10 0:00:00

Seismic Subsidence Behavior of Fly-ash-modifiedLoess under Dynamic Loading
WANG Jun,GAO Zhong-nan,CHE Gao-feng,ZHONG Xiu-mei,WANG Qiang,WANG Ping,WANG Qian and CHAI Shao-feng.Seismic Subsidence Behavior of Fly-ash-modifiedLoess under Dynamic Loading[J].Northwestern Seismological Journal,2016,38(5):751-756.
Authors:WANG Jun  GAO Zhong-nan  CHE Gao-feng  ZHONG Xiu-mei  WANG Qiang  WANG Ping  WANG Qian and CHAI Shao-feng
Institution:Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China,Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China and Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, Gansu, China;Key Laboratory of Loess Earthquake Engineering, China Earthquake Administration, Lanzhou 730000, Gansu, China;Geotechnical Disaster Prevention Engineering Technology Research Center of Gansu Province, Lanzhou 730000, Gansu, China
Abstract:In order to obtain raw material locally and make optimal use of fly ash in engineering construction in loess areas, we conducted a series of dynamic triaxial tests on unsaturated remolded loess specimens that had been modified with different proportions of fly ash. Based on the test results, we studied the seismic subsidence properties of loess based on the improvement afforded by the fly ash, and derived change laws for the dynamic modulus of deformation and the dynamic residual strain for different proportions of fly ash. The results show that the quantity of dope in fly ash significantly influences the seismic subsidence properties of loess. The changes in the dynamic modulus of deformation and in the dynamic residual strain vary with respect to the improvement afforded by fly ash under the same consolidation stress, i.e., the former becomes larger while the latter become smaller and the relationship between them is well described by the power function. Moreover, we verified that the anti-seismic subsidence behavior of the loess specimens was much better when the proportion of fly ash is about 20%. Thee research findings provide a scientific basis for establishing anti-seismic designations for foundations in loess areas, and thus have important application value.
Keywords:fly ash  loess  seismic subsidence  dynamic deformation modulus  dynamic residual strain
本文献已被 CNKI 等数据库收录!
点击此处可从《西北地震学报》浏览原始摘要信息
点击此处可从《西北地震学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号