首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geodynamical basis for crustal deformation under the Tibetan Plateau
Authors:Han-Shou Liu
Institution:Geodynamics Branch, Laboratory for Terrestrial Physics, Goddard Space Flight Center, Greenbelt, MD 20771 U.S.A.
Abstract:This paper uses plate tectonics and satellite-derived gravity data to further discussion of crustal deformation under the Tibetan Plateau. The first of our three contributions is a spherical harmonic analysis of the global plate boundary system. A distribution of 470 Dirac delta functions is applied to describe the generating forces according to the rates of crustal creation and destruction on the plate boundaries. Analysis of the extensional and compressional forces in the spreading and subducting zones shows that the present global plate motion causes compressional stresses in the N-S direction under the Tibetan Plateau. The second contribution is the calculation of the crustal stresses in Tibet as inferred from satellite gravity data. By applying solutions to the problem of the spherical shells, the satellite-determined stresses indicate that the up-welling mantle material under Tibet induce N-S and E-W extension. Finally, a superimposed stress system is constructed. This stress system shows that the present crustal deformation in Tibet does not produce N-S shortening but generates E-W extension.The results of this paper have provided geodynamical explanations for geological field observations in Tibet and fault plane solutions of earthquakes in the Tibetan side of the India-Eurasia collision. The stress patterns reveal that the cold downwelling mantle convection flow beneath southern Tibet pulls the Indian plate down but applies a bending moment on the end of the plate to uplift and support the mass of the Himalayas.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号