首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CURRENT CHANNELLING IN SQUARE PLATES WITH APPLICATIONS TO MAGNETOMETRIC RESISTIVITY1
Authors:S J CHEESMAN  R N EDWARDS
Abstract:The magnetometric resistivity (MMR) method uses a sensitive magnetometer to measure the low-level, low-frequency magnetic fields associated with the galvanic current flow between a pair of electrodes. While the MMR anomalies of simple structures such as dikes and vertical contacts have been determined analytically, there is a lack of systematic information on the expected responses from simple three-dimensional bodies. We determine the characteristic anomalies associated with square, plate-like conductors, which are excellent models of many base metal mineral deposits. The anomalies of plates of finite size are determined numerically using an integral equation method. A plate is subdivided into many sections and the current flow within each section is solved by equating the electrical field within each section to the tangential electrical field just outside it. When the plate size is small in relation to either the depth or the transmitter spacing, the shape and amplitude of the anomaly produced is closely approximated by a current dipole model of the same length and depth. At the other extreme, a large plate is represented by a half-plane. The dipole and half-plane models are used to bracket the behaviour of plates of finite size. The form of a plate anomaly is principally dependent on the shape, depth and orientation of the plate. A large, dipping plate near the surface produces a skewed anomaly highly indicative of its dip, but the amount of skew rapidly diminishes with increased depth or decreased size. Changes in plate conductivity affect the amplitude of the anomaly, but have little effect on anomaly shape. A current channelling parameter, determined from the conductivity contrast, can thus be used to scale the amplitude of an anomaly whose basic shape has been determined from geometrical considerations. The separation into geometrical and electrical factors greatly simplifies both the interpretation and modelling of MMR anomalies, particularly in situations with multiple plates. An empirical formula, using this separation, predicts the anomaly of two or more parallel plates with different conductances. In addition, the relation between the resolution of two vertical, parallel plates of equal conductance and their separation is determined. The ability of the integral equation method to model plate-like structures is demonstrated with the interpretation of an MMR anomaly in a survey conducted at Cork Tree Well in Western Australia. The buried conductor, a mineralized graphitic zone, is modelled with a vertical, bent plate. The depth to the top of the plate, and the plate conductance, is adjusted to fit the anomaly amplitude as closely as possible. From the modelling it would appear that this zone is not solely responsible for the observed anomaly.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号