首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection of potential fields source boundaries by enhanced horizontal derivative method
Authors:M Fedi  G Florio
Abstract:A high‐resolution method to image the horizontal boundaries of gravity and magnetic sources is presented (the enhanced horizontal derivative (EHD) method). The EHD is formed by taking the horizontal derivative of a sum of vertical derivatives of increasing order. The location of EHD maxima is used to outline the source boundaries. While for gravity anomalies the method can be applied immediately, magnetic anomalies should be previously reduced to the pole. We found that working on reduced‐to‐the‐pole magnetic anomalies leads to better results than those obtainable by working on magnetic anomalies in dipolar form, even when the magnetization direction parameters are not well estimated. This is confirmed also for other popular methods used to estimate the horizontal location of potential fields source boundaries. The EHD method is highly flexible, and different conditions of signal‐to‐noise ratios and depths‐to‐source can be treated by an appropriate selection of the terms of the summation. A strategy to perform high‐order vertical derivatives is also suggested. This involves both frequency‐ and space‐domain transformations and gives more stable results than the usual Fourier method. The high resolution of the EHD method is demonstrated on a number of synthetic gravity and magnetic fields due to isolated as well as to interfering deep‐seated prismatic sources. The resolving power of this method was tested also by comparing the results with those obtained by another high‐resolution method based on the analytic signal. The success of the EHD method in the definition of the source boundary is due to the fact that it conveys efficiently all the different boundary information contained in any single term of the sum. Application to a magnetic data set of a volcanic area in southern Italy helped to define the probable boundaries of a calderic collapse, marked by a number of magmatic intrusions. Previous interpretations of gravity and magnetic fields suggested a subcircular shape for this caldera, the boundaries of which are imaged with better detail using the EHD method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号