首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using geophysical methods to define the attitude and extension of water-bearing strata in the Miocene sediments of the Pannonian Basin
Institution:1. Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran;2. Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran;1. Department of Mining Exploitation and Prospection, Technical School of Mining Engineering (University of Oviedo), C/ Independencia 13, 33004 Oviedo, Spain;2. Hydro-Geophysics and NDT Modelling Unit, Polytechnic School of Mieres (University of Oviedo), C/ Gonzalo Gutiérrez Quirós S/N, 33600 Mieres, Spain
Abstract:In the area near the village of Jazak (southern part of Fru?ka Gora mountain, Serbia), hydrogeological investigations were carried out for the purpose of finding a water supply source to provide an adequate volume of water for a mineral water bottling plant. The first exploratory borehole (IBJf-1) penetrated a water-bearing layer of Miocene organogenic limestones. This aquifer has a thickness of about 30 m and a yield of only 2.2 l/s, which falls short of the required water volume (5 l/s).The objective of further exploration was to define the attitude and extension of the aquifer and thus select a more favourable site for a new exploratory borehole that would secure the required volume of water. For this purpose, geophysical exploration was carried out in 2003 through vertical electrical sounding (VES) and high-resolution 3D reflection seismic methods. The VES measurements enabled determination of aquifer depth and indicated that the water-bearing strata extend over the entire area studied. However, because of the equivalence problem, it was not possible to determine the thickness of the water-bearing stratum based solely on the VES data. Thus, the 3D seismic method was used in the second stage of investigation. A low-cost 3D seismic survey was carried out with fixed receiver lines, using a vibrator as the source of the seismic waves.From the 3D seismic data it was possible to determine the aquifer thickness. The depth of the aquifer determined by interpretation of the 3D seismic data was in accordance with the depth determined by the VES method. Based on the assumption that the hydraulic conductivity of this formation is identical or similar over the entire area, as well as the fact that the first well showed the presence of a subartesian aquifer, we proposed drilling another borehole (IBJf-2) in the zone where the data indicated that the water-bearing stratum was much thicker. The data obtained by drilling and coring were in agreement with the predicted aquifer thickness. Pumping tests showed that the water discharge in borehole IBJf-2 was 6 l/s.The results show that the objective of delineating the groundwater body by combined application of two geophysical methods (VES and 3D seismic) was successfully performed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号