首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of permafrost creep provides kinematic evidence for classifying a puzzling periglacial landform
Authors:Yan Hu  Lin Liu  Xiaowen Wang  Lin Zhao  Tonghua Wu  Jialun Cai  Xiaofan Zhu  Junming Hao
Institution:1. Earth System Science Program, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China;2. Department of Surveying and Geo-informatics, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China;3. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China

Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China;4. Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Abstract:Mechanical processes operating on the slope surface or at depth control the dynamics of alpine landforms and hold critical information of their geomorphological characteristics, yet they often lack systematic quantification and in-depth interpretation. This study aims to address a long-standing issue concerning geomorphological classification from a kinematic perspective. A group of periglacial landforms consisting of several lobes were discovered in the East Kunlun Mountains of China 30 years ago but were ambiguously classified as rock glaciers and later as gelifluction deposits. Here, we use satellite Interferometric Synthetic Aperture Radar to quantitatively characterize the spatial and temporal changes of the surface movement of these landforms. We observe that: (1) its 17 lobes show a pattern of landform-scale and uniform surface movement, especially during May to October; (2) the lobes move at a spatial mean downslope velocity of 10 to 60 cm/yr and a maximum velocity as high as 100 cm/yr in summer; (3) the landforms are nearly inactive from winter to late spring. Based on these observations, we postulate that the movement of the lobes are driven by deep-seated permafrost creep which typically occurs in rock glaciers. The debris of Lobe No.4 is composed of both boulders and pebbles supported by fine-grained matrix generated from the in situ weathering process. It develops a talus-like oversteepened front around 40° and a convex transverse profile perpendicular to the creep direction, which are also characteristic features of a rock glacier. Piecing these observations together, we identify Lobe No.4 as a debris-mantled-slope-connected rock glacier, with the gelifluction process occurring on the surface as small-scale and discrete events. © 2020 John Wiley & Sons, Ltd.
Keywords:periglacial landforms  InSAR  rock glacier kinematics  gelifluction  permafrost creep  East Kunlun
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号