首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Erosion of a cyclic saltmarsh in Morecambe Bay,North-West England
Authors:Ada W Pringle
Institution:Ada W. Pringle (Née Phillips)
Abstract:This paper presents results of investigations (1983–1992) into rates of change, morphology and processes occurring during the current erosional phase in a Morecambe Bay cyclic saltmarsh, in which it has narrowed from c. 1000 m (1975) to c. 150 m (1992). Monthly monitoring of marsh edge erosion and creek knickpoint retreat has revealed temporal and spatial variations. Highest frequency changes of low magnitude coincided with non-storm conditions and overmarsh tides above 5·80 m OD, which submerged the whole marsh. Less frequent changes of greater magnitude were associated with both overmarsh tides and strong onshore winds over 15 ms?1, which generated high energy waves. The lowest frequency change of greatest magnitude occurred during an extreme onshore storm event and surge. Morphologically, during the erosional phase, a low angled landward slope was generated as erosion of the c. 0·5 m high active seaward cliff coincided with vertical accretion of 0·07 ma?1 of relatively coarse sediment on the marsh surface immediately landward. Tidal hydrodynamics strongly influence the saltmarsh, which is confined to the upper 2·5 m of the macrotidal range (maximum c. 10·5 m). During overmarsh spring tides (maximum creek flood flow rate 0·13 ms?1, up to bankfull level), flooding begins over lower landward creek banks before submerging the higher marsh edge. During ebb tides, water trapped by this higher edge can escape seaward only via the creeks (maximum ebb velocities 2·07 ms?1 below bankfull level). Wave erosion also is limited to spring tides. Monthly mapping of the Kent Estuary channel pattern seaward of the saltmarsh showed that medium term higher erosion rates were related to the presence of a large channel, which lowered the adjacent creek base level and allowed larger waves to attack the marsh edge than when a sandbank flanked the marsh. Major River Kent channel shifts appear to initiate accretional or erosional phases of cyclic saltmarsh development.
Keywords:saltmarsh  cyclic erosion  tidal hydrodynamics  estuary channels  Morecambe Bay
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号