首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Turbulence and Rainfall Microphysical Parameters Retrieval and Their Relationship Analysis Based on Wind Profiler Radar Data
作者姓名:胡苏蔓  黄兴友  马玉蓉
摘    要:Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals;the turbulent dissipation rate ε and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) ε in the precipitation area ranged from 10~(-3.5) to 10~(-1) m~2 s~(-3) and was positively correlated with the falling velocity spectrum width;(2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of ε being weak or strong varied with rainfall attributes;(3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event;(4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.

关 键 词:turbulent  dissipation  rate    rainfall  microphysical  parameters    wind  profiler  radar    spectrum  width    collision-coalescence    break-up    retrieval
收稿时间:2021-02-19

Turbulence and Rainfall Microphysical Parameters Retrieval and Their Relationship Analysis Based on Wind Profiler Radar Data
HU Su-man,HUANG Xing-you and MA Yu-rong.Turbulence and Rainfall Microphysical Parameters Retrieval and Their Relationship Analysis Based on Wind Profiler Radar Data[J].Journal of Tropical Meteorology,2021,27(3):291-302.
Authors:HU Su-man  HUANG Xing-you and MA Yu-rong
Abstract:Rainfall is triggered and mainly dominated by atmospheric thermo-dynamics and rich water vapor.Nonetheless, turbulence is also considered as an important factor influencing the evolution of rainfall microphysical parameters. To study such an influence, the present study utilized boundary layer wind profiler radar measurements. The separation point of the radar power spectral density data was carefully selected to classify rainfall and turbulence signals; the turbulent dissipation rate ε and rainfall microphysical parameters can be retrieved to analyze the relationship betweenε and microphysical parameters. According to the retrievals of two rainfall periods in Beijing 2016, it was observed that(1) ε in the precipitation area ranged from 10-3.5 to 10-1 m2 s-3 and was positively correlated with the falling velocity spectrum width; (2) interactions between turbulence and raindrops showed that small raindrops got enlarge through collision and coalescence in weak turbulence, but large raindrops broke up into small drops under strong turbulence, and the separation value of ε being weak or strong varied with rainfall attributes; (3) the variation of rainfall microphysical parameters(characteristic diameters, number concentration, rainfall intensity, and water content) in the middle stage were stronger than those in the early and the later stages of rainfall event; (4) unlike the obvious impacts on raindrop size and number concentration, turbulence impacts on rain rate and LWC were not significant because turbulence did not cause too much water vapor and heat exchange.
Keywords:turbulent dissipation rate  rainfall microphysical parameters  wind profiler radar  spectrum width  collision-coalescence  break-up  retrieval
本文献已被 CNKI 等数据库收录!
点击此处可从《热带气象学报(英文版)》浏览原始摘要信息
点击此处可从《热带气象学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号