首页 | 本学科首页   官方微博 | 高级检索  
     检索      

The Relationship Between Abnormal Meiyu and Medium-Term Scale Wave Perturbation Energy Propagation Along the East Asian Subtropical Westerly Jet
作者姓名:金荣花  杨 宁  孙晓晴
摘    要:The East Asian subtropical westerly jet(EASWJ) is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin, China. This article analyzed periods of the medium-term EASWJ variation,wave packet distribution and energy propagation of Rossby waves along the EASWJ during Meiyu season, and investigated their possible influence on abnormal Meiyu rain. The results showed that during the medium-term scale atmospheric dynamic process, the evolution of the EASWJ in Meiyu season was mainly characterized by the changes of3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves. The strong perturbation wave packet and energy propagation of the 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves are mostly concentrated in the East Asian region of 90°-150°E, where the two wave trains of perturbation wave packets and wave-activity flux divergence coexist in zonal and meridional directions, and converge on the EASWJ. Besides, the wave trains of perturbation wave packet and wave-activity flux divergence in wet Meiyu years are more systematically westward than those in dry Meiyu years, and they are shown in the inverse phases between each other. In wet(dry) Meiyu year, the perturbation wave packet high-value area of the 10-15 d low-frequency variability is located between the Aral Sea and the Lake Balkhash(in the northeastern part of China), while over eastern China the wave-activity flux is convergent and strong(divergent and weak), and the high-level jets are strong and southward(weak and northward). Because of the coupling of high and low level atmosphere and high-level strong(weak) divergence on the south side of the jet over the Yangtze-Huaihe River Basin, the low-level southwest wind and vertically ascending motion are strengthened(weakened), which is(is not)conducive to precipitation increase in the Yangtze-Huaihe River Basin. These findings would help to better understand the impact mechanisms of the EASWJ activities on abnormal Meiyu from the perspective of medium-term scale Rossby wave energy propagation.

关 键 词:East  Asian  subtropical  westerly  jet  (EASWJ)    medium-term  scale    Rossby  wave    wave  packet  distribution    energy  propagation    abnormal  Meiyu
收稿时间:2019-10-14

The Relationship Between Abnormal Meiyu and Medium-Term Scale Wave Perturbation Energy Propagation Along the East Asian Subtropical Westerly Jet
JIN Rong-hu,YANG Ning and SUN Xiao-qing.The Relationship Between Abnormal Meiyu and Medium-Term Scale Wave Perturbation Energy Propagation Along the East Asian Subtropical Westerly Jet[J].Journal of Tropical Meteorology,2020,26(2):125-136.
Authors:JIN Rong-hu  YANG Ning and SUN Xiao-qing
Institution:1. National Meteorological Center, China Meteorological Administration, Beijing 100081 China; 2. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225 China; 3. Chengdu Plateau Meteorological Institute, China Meteorological Administration, Chengdu 610072 China
Abstract:The East Asian subtropical westerly jet (EASWJ) is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin, China. This article analyzed periods of the medium-term EASWJ variation, wave packet distribution and energy propagation of Rossby waves along the EASWJ during Meiyu season, and investigated their possible influence on abnormal Meiyu rain. The results showed that during the medium-term scale atmospheric dynamic process, the evolution of the EASWJ in Meiyu season was mainly characterized by the changes of 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves. The strong perturbation wave packet and energy propagation of the 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves are mostly concentrated in the East Asian region of 90°-150°E, where the two wave trains of perturbation wave packets and wave-activity flux divergence coexist in zonal and meridional directions, and converge on the EASWJ. Besides, the wave trains of perturbation wave packet and wave-activity flux divergence in wet Meiyu years are more systematically westward than those in dry Meiyu years, and they are shown in the inverse phases between each other. In wet (dry) Meiyu year, the perturbation wave packet high-value area of the 10-15 d low-frequency variability is located between the Aral Sea and the Lake Balkhash (in the northeastern part of China), while over eastern China the wave-activity flux is convergent and strong (divergent and weak), and the high-level jets are strong and southward (weak and northward). Because of the coupling of high and low level atmosphere and high-level strong (weak) divergence on the south side of the jet over the Yangtze-Huaihe River Basin, the low-level southwest wind and vertically ascending motion are strengthened (weakened), which is (is not) conducive to precipitation increase in the Yangtze-Huaihe River Basin. These findings would help to better understand the impact mechanisms of the EASWJ activities on abnormal Meiyu from the perspective of medium-term scale Rossby wave energy propagation.
Keywords:East Asian subtropical westerly jet (EASWJ)  medium-term scale  Rossby wave  wave packet distribution  energy propagation  abnormal Meiyu
本文献已被 CNKI 等数据库收录!
点击此处可从《热带气象学报(英文版)》浏览原始摘要信息
点击此处可从《热带气象学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号