首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The daily and annual effects of dew, frost, and snow on a non-ventilated net radiometer
Authors:Esmaiel Malek  
Institution:aDepartment of Plants, Soils and Climate, Utah State University, Logan, UT 84322-4820, USA
Abstract:The formation of dew, deposition of frost and accumulation of snow mainly on the upper domes of a non-ventilated net radiometer seriously affect the measurement of available energy (net radiation). Net radiometers measure radiation, and energy balances and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew, frost, and snow on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Qlow asterisk7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May–September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 s and averaged into 20 min. To evaluate the effects of dew, frost, and snow, three days were chosen: 26 April 2004 with early morning dew, 6 January 2005 with an early morning frost, and the snowy day of 24 February 2005. Dew formation, frost deposition, and snow accumulation occurred mainly on the upper dome of the non-ventilated Qlow asterisk7.1 net radiometer on the related days, while the ventilated Kipp & Zonen system was free of dew, frost and snow. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew and frost periods of the above-mentioned days was greater than ventilated ones Rn,vent. (− 0.2 MJ m− 2 vs. − 0.8 MJ m− 2 during almost 4 h on 26 April 2004, and − 0.2 MJ m− 2 vs. − 0.7 MJ m− 2 during almost 6.5 h on 6 January 2005). The reason for higher reading by the non-ventilated net radiometer during dew and frost periods was due to emission of additional longwave radiation from water and ice crystals formed mainly on the upper dome of the Qlow asterisk7.1 net radiometer. In contrast, during the snowy day of 24 February 2005, the Rn,unvent. was less than Rn,vent. (− 4.00 MJ m− 2 vs. 0.77 MJ m− 2, mainly from sunrise to sunset). The extremely low Rn,unvent. measured by the non-ventilated net radiometer on 24 February 2005 is due to blocking of the incoming solar radiation (mainly diffuse radiation) by the snow-covered upper dome.
Keywords:Dew  Frost snow  Ventilated  Unventilated net radiometer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号