首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Public health impacts of climate change in Washington State: projected mortality risks due to heat events and air pollution
Authors:J Elizabeth Jackson  Michael G Yost  Catherine Karr  Cole Fitzpatrick  Brian K Lamb  Serena H Chung  Jack Chen  Jeremy Avise  Roger A Rosenblatt  Richard A Fenske
Institution:1. Department of Family Medicine, University of Washington, Seattle, WA, 98195, USA
2. Department of Sociology, University of Washington, Seattle, WA, 98195, USA
3. Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
4. Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
5. Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, 99164-2910, USA
6. Institute for Chemical Process and Environmental Technology, National Research Council Canada, Ottawa, ON, Canada
7. Atmospheric Modeling and Support Section, California Air Resources Board, Sacramento, CA, USA
Abstract:Illness and mortality related to heat and worsening air quality are core public health concerns associated with climate change projections. We examined the historical relationship between age- and cause-specific mortality rates from 1980 through 2006 and heat events at the 99th percentile of humidex values in the historic period from January 1, 1970 to December 31, 2006 in the greater Seattle area (King, Pierce and Snohomish counties), Spokane County, the Tri-Cities (Benton and Franklin counties) and Yakima County; the relative risks of mortality during heat events were applied to population and climate projections for Washington State to calculate number of deaths above the baseline (1980–2006) expected during projected heat events in 2025, 2045 and 2085. Three different warming scenarios were used in the analysis. Relative risks for the greater Seattle area showed a significant dose-response relationship between heat event duration and daily mortality rates for non-traumatic deaths for persons ages 45 and above, typically peaking at four days of exposure to humidex values above the 99th percentile. The largest number of projected excess deaths in all years and scenarios for the Seattle region was found for age 65 and above. Under the middle warming scenario, this age group is expected to have 96, 148 and 266 excess deaths from all non-traumatic causes in 2025, 2045 and 2085, respectively. We also examined projected excess deaths due to ground-level ozone concentrations at mid century (2045–2054) in King and Spokane counties. Current (1997–2006) ozone measurements and mid-twenty-first century ozone projections were coupled with dose-response data from the scientific literature to produce estimates overall and cardiopulmonary mortality. Daily maximum 8-h ozone concentrations are forecasted to be 16–28% higher in the mid twenty-first century compared to the recent decade of 1997–2006. By mid-century in King County the non-traumatic mortality rate related to ozone was projected to increase from baseline (0.026 per 100,000; 95% confidence interval 0.013–0.038) to 0.033 (95% CI 0.017–0.049). For the same health outcome in Spokane County, the baseline period rate of 0.058 (95% CI 0.030–0.085) was estimated increase to 0.068 (95% CI 0.035–0.100) by mid-century. The cardiopulmonary death rate per 100,000 due to ozone was estimated to increase from 0.011 (95% CI 0.005–0.017) to 0.015 (0.007–0.022) in King County, and from 0.027 (95% CI 0.013–0.042) to 0.032 (95% CI 0.015–0.049) in Spokane County. Public health interventions aimed at protecting Washington’s population from excessive heat and increased ozone concentrations will become increasingly important for preventing deaths, especially among older adults. Furthermore, heat and air quality related illnesses that do not result in death, but are serious nevertheless, may be reduced by the same measures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号