首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Global warming,low-frequency variability,and biennial oscillation: an attempt to understand the physical mechanisms driving major ENSO events
Authors:Sae-Rim Yeo  Kwang-Yul Kim
Institution:1. School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-747, Republic of Korea
Abstract:Three primary global modes of sea surface temperature (SST) variability during the period of 1871–2010 are identified through cyclostationary empirical orthogonal function analysis. The first mode exhibits a clear trend and represents global SST warming with an ‘El Niño-like’ SST pattern in the tropical Pacific. The second mode is characterized by considerable low-frequency variability in both the tropical Pacific and the North Pacific regions, indicating that there is a close connection between the two regions on interannual and decadal time scales. The third mode shows a seesaw pattern between El Niño and La Niña within a two-year period; this mode is derived by the oscillatory tendency of the tropical Pacific ocean–atmosphere coupled system. A SST reconstruction based on these three modes captures a significant portion of the SST variability in the raw data, which is primarily associated with El Niño-Southern Oscillation (ENSO) events in the tropical Pacific. Additionally, this study attempts to interpret the major ENSO events that have occurred since the 1970s in terms of the interplay originating from these three modes of variability. In particular, two key points are derived from this analysis: (1) the most extreme El Niño events occurred in 1982/1983 and 1997/1998 are attributed to the positive contributions of all three modes; and (2) the central Pacific (CP) El Niño events in the 1990s and 2000s have different physical mechanisms, that is, the CP El Niño events in the early 1990s originated mainly from the low-frequency mode, while those in the early 2000s derived mainly from the global warming mode.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号