首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variability of precipitation intensity: sensitivity to treatment of moist convection in an RCM and a GCM
Authors:Virginie Lorant  Norman A McFarlane  John F Scinocca
Institution:(1) Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, C/O University of Victoria, PO BOX 1700, STN CSC, Victoria, BC, V8W 2Y2, Canada
Abstract:The present study investigates the sensitivity of the frequency distribution of precipitation rates to the closure employed in the penetrative mass flux cumulus parameterization of Zhang and McFarlane in the Canadian regional climate model (CRCM) and in the Canadian Centre for Climate Modelling and Analysis third generation global atmospheric general circulation model (AGCM3). The effects of an alternative prognostic closure for mass flux cumulus parameterization in place of the original diagnostic closure are investigated. A set of experiments is performed in which changes in the frequency distribution of precipitation rates and cloud base mass-flux are examined as a function of the parameters that define each closure scheme. The relationship between the frequency distribution of precipitation and cloud base mass flux is examined and a self-consistent relation is found when the depth of convection is taken into account. Experiments performed with the prognostic closure favor relatively strong cloud base mass-flux and deep penetrative convection with relatively more intense convective precipitation. The mean of the frequency distribution of convective precipitation is larger and the heavier events become more intense. Also, experiments performed with the prognostic closure favor less frequent convective activity. However these changes in the distribution of convective component of precipitation are generally offset by opposite changes in the distribution of the resolved large-scale component of precipitation, resulting in relatively smaller changes in total precipitation. The altered partition of precipitation between convective and large-scale components is found to alter the energy balance and the thermodynamic equilibrium structure of the troposphere. The robustness found in the CRCM results regarding the sensitivity of the frequency distribution of precipitation to changes in the closure of the deep convection parameterization is investigated by performing a similar analysis of AGCM3 simulations. A remarkable similarity of AGCM3 and CRCM results is found suggesting that the closure sensitivity identified in this study is robust.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号