首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP
Authors:Irena Hajdas  Susan D Ivy  Jürg Beer  Georges Bonani  Dieter Imboden  André F Lotted  Michael Sturm  Martin Suter
Institution:(1) EAWAG, Umweltphysik, CH-8600 Dübendorf, Switzerland;(2) ETHZ Hönggerberg, Mittelenergiephysik, CH-8093 Zürich, Switzerland
Abstract:For the extension of the radiocarbon calibration curve beyond 10000 14C y BP, laminated sediment from Lake Soppensee (central Switzerland) was dated. The radiocarbon time scale was obtained using accelerator mass spectrometry (AMS) dating of terrestrial macrofossils selected from the Soppensee sediment. Because of an unlaminated sediment section during the Younger Dryas (10000–11000 14C y BP), the absolute time scale, based on counting annual layers (varves), had to be corrected for missing varves. The Soppensee radiocarbon-verve chronology covers the time period from 6000 to 12000 14C y BP on the radiocarbon time scale and 7000 to 13000 calendar y BP on the absolute time scale. The good agreement with the tree ring curve in the interval from 7000 to 11450 cal y BP (cal y indicates calendar year) proves the annual character of the laminations. The ash layer of the Vasset/Killian Tephra (Massif Central, France) is dated at 8230±140 14C y BP and 9407±44 cal y BP. The boundaries of the Younger Dryas biozone are placed at 10986±69 cal y BP (Younger Dryas/Preboreal) and 1212±86 cal y BP (Alleröd/Younger Dryas) on the absolute time scale. The absolute age of the Laacher See Tephra layer, dated with the radiocarbon method at 10 800 to 11200 14C y BP, is estimated at 12350 ± 135 cal y BP. The oldest radiocarbon age of 14190±120 14C y BP was obtained on macrofossils of pioneer vegetation which were found in the lowermost part of the sediment profile. For the late Glacial, the offset between the radiocarbon (10000–12000 14C y BP) and the absolute time scale (11400–13000 cal y BP) in the Soppensee chronology is not greater than 1000 years, which differs from the trend of the U/Th-radiocarbon curve derived from corals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号