首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Land–sea heating contrast in an idealized Asian summer monsoon
Authors:Email author" target="_blank">C?ChouEmail author
Institution:(1) Environmental Change Research Project, Institute of Earth Sciences, Academia Sinica, Taipei, 115, Taiwan,
Abstract:Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro–Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land–sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Niño (La Niña)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Niño (La Niña)-like SST anomalies also induces colder (warmer) tropospheric temperature over Eurasia and warmer (colder) tropospheric temperature over the Indian Ocean. The associated negative (positive) meridional gradient of the tropospheric temperature anomalies is consistent with the existence of the weak (strong) Asian summer monsoon.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号