首页 | 本学科首页   官方微博 | 高级检索  
     检索      

波流相互作用与波动传播模态
引用本文:徐祥德,冉令坤.波流相互作用与波动传播模态[J].大气科学,2007,31(6):1237-1250.
作者姓名:徐祥德  冉令坤
作者单位:1.中国气象科学研究院,北京,100081
摘    要:波和流是大气中两种最基本的运动形式,两者之间的相互作用可以导致千变万化的天气现象。波流相互作用理论是大气动力学的基本理论之一,该理论的研究具有重要的理论价值和科学意义。波流相互作用的研究主要包括两方面:一方面是可以描述基本气流对波强迫作用的“波作用”(守恒)方程的研究,另一方面是可以描述波对基本气流反馈作用的E-P通量以及波形变、传播等理论的研究。波流相互作用的研究不仅在理论上已取得重要进展,例如, E-P通量的提出,剩余环流的引进,广义E-P通量的出现,三维E-P通量的建立,波作用守恒方程、波动突变、波流稳定性结构、波形变及其大圆路径、低频波遥相关等理论的发展,而且在实际应用上也取得丰硕成果,如科学地解释了赤道平流层东西风准两年振荡、极地平流层爆发性增温、瞬变波对阻高的维持和高空急流加速以及大气低频波遥相关等,特别是为预测行星波的传播,研究风暴轴和诊断分析实际大气中波能集中区和发散区提供了理论基础和科学方法。作者从小振幅和有限振幅扰动两方面回顾了国内外波流相互作用和低频波传播理论的研究进展,重点介绍了大尺度环流系统波流相互作用和波动传播模态的最新研究成果,提出了不同动力、热力背景下多尺度波流相互作用机理及其理论模型,建立了非线性大气动力学突变及其稳定性结构等理论。相对来说,热源强迫和地形强迫引起的波流相互作用中稳定性问题的研究一直比较薄弱,特别是关于大气水分循环过程和青藏高原等复杂大地形影响下不同尺度系统波流相互作用的研究,这也是未来波流相互作用研究的一个重要内容。

关 键 词:波流相互作用  波动传播模态  E-P通量  波作用方程
文章编号:1006-9895(2007)06-1237-14
修稿时间:2007-05-30

Wave-Flow Interaction and Wave-Propagation Modes
XU Xiang-De and RAN Ling-Kun.Wave-Flow Interaction and Wave-Propagation Modes[J].Chinese Journal of Atmospheric Sciences,2007,31(6):1237-1250.
Authors:XU Xiang-De and RAN Ling-Kun
Institution:1 Chinese Academy of Meteorological Sciences, Beijing 100081 2 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Abstract:Wave and basic flow are the two primary forms of atmospheric motions,and their interaction may lead to various weather phenomena. As a basic subject of atmospheric dynamics,studies of wave-flow interaction are of significance in academic and scientific senses.The wave-flow interaction theory includes two aspects:(1) the "wave-activity"(conservation) equation which describes the effect of basic flow on wave;(2) the E-P flux and wave transformation and propagation theories that represent the feedback of wave to basic flow.Not only many important advancements had been made in the theoretical researches,such as the proposal of E-P flux,introduction of residual circulation,appearance of extended E-P flux,construction of three-dimension EP flux,and progresses of "wave-activity" conservation equation,abrupt change of wave,wave-flow steady structure,wave transforming and its great circle route and remote correlation of low-frequency waves,etc.,but also a lot of achievements had been accomplished in the applications of these theories,including the scientific explanations to the quasi-biennial oscillation(QBO) of stratospheric zonal wind in the equator,the stratospheric sudden warming over the polar region,the maintaining effect of transient wave on blocking high,the acceleration of upper level jet stream and the remote correlation of low-frequency waves.Especially,these researches of wave-flow interaction provide the theoretical foundations and scientific methods for the forecast of planetary wave propagation,the investigations of storm track and the diagnosis of convergence and divergence of wave energy in real atmosphere.From small-amplitude and finite-amplitude aspects,the research progresses of wave-flow interaction and wave propagation theories in China and overseas countries are reviewed in this paper.Focusing on the investigations of wave-flow interaction and wave-propagation modes in large-scale circulation,the authors bring forward the mechanism and theoretical mode for multi-scale wave-flow interaction under various dynamic and thermal backgrounds,and reveal the nonlinear atmospheric dynamic abrupt change and its steady structure theories.Compared with the above investigations,the stability study of complicated wave-flow interaction caused by heating source and topography forcings is unsubstantial.Especially,the effects of atmospheric water cycle and topography of the Tibetan Plateau on wave-flow interaction of synoptic systems with various scales are not clearly known.It would become an important branch for wave-flow interaction research in the future.
Keywords:wave-flow interaction  wave-propagation modes  E-P flux  wave-activity equation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号