首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The interannual variability of East Asian Monsoon and its relationship with SST in a coupled Atmosphere-Ocean-Land climate model
Authors:Wang Huijun
Institution:(1) Laboratory for Numerical Modeling of Atmospheric Science and Geophysical Fluid Dynamics (LASG) Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing
Abstract:Based on a 200 year simulation and reanalysis data (1980-1996), the general characteristics of East Asian monsoon (EAM) were analyzed in the first part of the paper. It is clear from this research that the South Asian monsoon (SAM) defined by Webster and Yang (1992) is geographically and dynamically different from the East Asian monsoon (EAM). The region of the monsoon defined by Webster and Yang (1992) is located in the tropical region of Asia (40-110oE, 10-20oN), including the Indian monsoon and the Southeast Asian monsoon, while the EAM defined in this paper is located in the subtropical region of East Asia (110-125oE, 20-40oN). The components and the seasonal variations of the SAM and EAM are different and they characterize the tropical and subtropical Asian monsoon systems respectively. A suitable index (EAMI) for East Asian monsoon was then defined to describe the strength of EAM in this paper.In the second part of the paper, the interannual variability of EAM and its relationship with sea surface temperature (SST) in the 200 year simulation were studied by using the composite method, wavelet transformation, and the moving correlation coefficient method. The summer EAMI is negatively correlated with ENSO (El Nino and Southern Oscillation) cycle represented by the NINO3 sea surface temperature anomaly (SSTA) in the preceding April and January, while the winter EAM is closely correlated with the succeeding spring SST over the Pacific in the coupled model. The general differences of EAM between El Nino and La Nina cases were studied in the model through composite analysis. It was also revealed that the dominating time scales of EAM variability may change in the long-term variation and the strength may also change. The anomalous winter EAM may have some correlation with the succeeding summer EAM, but this relationship may disappear sometimes in the long-term climate variation. Such time-dependence was found in the relationship between EAM and SST in the long-term climate simulation as well.
Keywords:East Asian monsoon  Interannual variability  Coupled climate model
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号