首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere
Authors:BI Yun  CHEN Yuejuan  ZHOU Renjun  YI Mingjian and DENG Shumei
Institution:School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026,School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026,Anhui Institute of Meteorological Sciences, Hefei 230031
Abstract:To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
Keywords:stratospheric water vapor  temperature  numerical simulation  SOCRATES model
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号