首页 | 本学科首页   官方微博 | 高级检索  
     检索      

机载微波大气温度探测仪多高度飞行观测试验结果分析
引用本文:崔新东,汤鹏宇,姚志刚,赵增亮,孙泽中,谭泉.机载微波大气温度探测仪多高度飞行观测试验结果分析[J].热带气象学报,2019,35(2):224-233.
作者姓名:崔新东  汤鹏宇  姚志刚  赵增亮  孙泽中  谭泉
作者单位:1.北京应用气象研究所,北京 100029
基金项目:国家自然科学基金项目NSFC41575031国家自然科学基金项目41175089中国博士后基金2015M580124
摘    要:机载微波大气温度探测仪可以机动灵活地获取大气温度廓线信息。针对一次机载微波大气温度探测仪的多高度飞行观测试验,基于逐线积分模式和大气参数廓线库,建立用于不同飞行高度的快速辐射传输模式,分析了仪器观测亮温的质量并对仪器观测进行了订正;建立了基于神经网络的微波大气温度廓线反演算式,分析了不同高度、不同通道选择对于大气温度廓线反演性能的影响。研究结果表明:(1)较低飞行高度计算得到的各地表敏感通道地表比辐射率之间具有较好的一致性;(2)采用订正算式订正后,不同飞行高度的模拟亮温与观测亮温具有较好的一致性;(3)机载微波大气温度反演最优通道组合依赖于平台飞行高度;(4)采用最优的通道组合,4 200 m、3 200 m和2 500 m高度层温度反演均方根误差范围分别为0.5~1.8 K、0.5~1.3 K和0.4~1.0 K。 

关 键 词:机载微波温度探测仪    地表比辐射率    神经网络
收稿时间:2017-12-02

RESULT ANALYSIS OF OBSERVATIONS BY AIRBORNE MICROWAVE INSTRUMENTS ON MULTI-ALTITUDE FLIGHTS
CUI Xin-dong,TANG Peng-yu,YAO Zhi-gang,ZHAO Zeng-liang,SUN Ze-zhong and TAN Quan.RESULT ANALYSIS OF OBSERVATIONS BY AIRBORNE MICROWAVE INSTRUMENTS ON MULTI-ALTITUDE FLIGHTS[J].Journal of Tropical Meteorology,2019,35(2):224-233.
Authors:CUI Xin-dong  TANG Peng-yu  YAO Zhi-gang  ZHAO Zeng-liang  SUN Ze-zhong and TAN Quan
Institution:1.Beijing Institute of Applied Meteorology, Beijing 100029, China2.State Key Laboratory of Geo-Information Engineering, Xi'an 710054, China3.Beijing Institute of Aviation Meteorology, Beijing 100029, China4.The Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China5.Uint 96833, PLA, Huaihua 418099, China
Abstract:Airborne microwave sounding instruments can get atmosphere temperature flexibly. Using line-by-line calculation model MPM and profile datasets, a fast radiative transfer model was applied to airborne microwave sounding instruments and an artificial neural network numerical simulation scheme was developed, which evaluated the multi-altitude flight examinations of the airborne microwave sounding instruments. A neural network was analyzed by a series of retrieval experiments. The results are shown as follows: (1) Surface emissivity of lower-altitude flight calculation has good consistency; (2) With an adjustment model, the fast radiative transfer model can preferably simulate airborne bright temperatures; (3) With the airborne height changing, the best combination of airborne microwave sounding instruments channels is different; (4) With the best combination of airborne microwave sounding instruments channels, the atmospheric temperature RMS error for 4 200 m, 3 200 m and 2 500 m is between 0.5 K and 1.8 K, 0.5 K and 1.3 K, and 0.5 K and 1.0 K, respectively.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《热带气象学报》浏览原始摘要信息
点击此处可从《热带气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号