首页 | 本学科首页   官方微博 | 高级检索  
     检索      

边界层参数化对海南岛海风环流结构模拟的影响
引用本文:杨秋彦,苗峻峰,王语卉.边界层参数化对海南岛海风环流结构模拟的影响[J].热带气象学报,2019,35(2):234-252.
作者姓名:杨秋彦  苗峻峰  王语卉
作者单位:1.南京信息工程大学大气科学学院,江苏 南京 210044
基金项目:国家重点研发计划重点专项项目2018YFC1506902
摘    要:利用WRF V3.7详细分析了应用8种边界层参数化方案(YSU、MYNN2.5、MYNN3、ACM2、BouLac、UW、SH、GBM)所模拟的2014年5月25日海南岛海风环流结构的差异,其中YSU、ACM2和SH为非局地闭合方案,MYNN2.5、MYNN3、BouLac、UW和GBM为局地闭合方案。结果表明:对于海风环流水平结构的模拟,15时,YSU、ACM2、BouLac、UW和SH模拟的北部海风较强,SH和GBM的内陆风速偏大。温度与海风发展强度相对应,MYNN2.5与MYNN3模拟的岛屿温度偏低,海陆温差小,海风相对较弱。对于海风环流垂直结构的模拟,09时海风开始,但强度较小,且存在残余陆风,向内陆传播距离较短,YSU、MYNN2.5和SH方案的海风相对较强。12时,海风已呈现出较为清晰的环流结构,YSU和ACM2的海风厚度及向内陆传播距离相对强于其它方案,MYNN3的环流结构则不太明显,且向内陆推进距离短,海风相对较弱。15时,海风发展强盛,MYNN2.5和MYNN3方案模拟的海风垂直强度较小,ACM2方案的海风垂直环流特征最为明显。18时,海风的强度和扰动均有所减弱,ACM2、BouLac和UW的整体海风相对强于其它方案。21时海风已基本转为陆风,BouLac与UW的陆风环流结构最为清晰。位温、水汽及海风垂直环流强度的发展变化与海风的演变过程基本一致。造成ACM2模拟海风偏强的原因是其边界层垂直混合偏强,形成了足够的湍流混合强度所致。对于边界层高度的模拟,ACM2的边界层顶最高,这与此方案所模拟的海风强度偏大相吻合,其它方案的边界层高度与海风强度并不完全一致。 

关 键 词:复杂地形    边界层参数化    近地层参数化    海风环流    数值模拟
收稿时间:2017-12-02

IMPACT OF PLANETARY BOUNDARY LAYER PARAMETERIZATIONS ON SIMULATED SEA BREEZE CIRCULATION OVER THE HAINAN ISLAND
YANG Qiu-yan,MIAO Jun-feng and WANG Yu-hui.IMPACT OF PLANETARY BOUNDARY LAYER PARAMETERIZATIONS ON SIMULATED SEA BREEZE CIRCULATION OVER THE HAINAN ISLAND[J].Journal of Tropical Meteorology,2019,35(2):234-252.
Authors:YANG Qiu-yan  MIAO Jun-feng and WANG Yu-hui
Institution:1.College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China2.Zhejiang Meteorological Observatory, Hangzhou 310016, China
Abstract:To study the impact of planetary boundary layer parameterizations (YSU, MYNN2.5, MYNN3, ACM2, BouLac, UW, SH, GBM) on the simulated sea breeze circulation, WRF V3.7 is used to simulate a typical case of sea breeze day on May 25, 2014 over the Hainan Island. YSU, ACM2 and SH are non-local closure schemes, and the MYNN2.5, MYNN3, BouLac, UW and GBM are local TKE schemes. The results are shown as follows: In the simulation of horizontal structure of sea breeze, the intensity of YSU, ACM2, BouLac, UW and SH in the north is strong and the inland wind speed of SH and GBM is relatively high at 15:00 LST. Meanwhile, the variations of temperature are consistent with the intensity of sea breeze, and MYNN2.5 and MYNN3 simulate low temperature. As a result, their land-sea thermal difference is less than that of the other 6 schemes, and the intensity of sea breeze is weak. In the simulation of vertical structure of sea breeze, at 09:00 LST, the sea breeze strength is small and there is remnant land breeze, the propagation distance of sea breeze is short, YSU, MYNN2.5 and SH simulate strong sea breeze. At 12:00 LST, the circulation structure of sea breeze is clear, YSU and ACM2 simulate thick sea breeze depth and long propagation distance, but the circulation structure of MYNN3 is not clear and the propagation distance is short, resulting in weak intensity of sea breeze. At 15:00 LST, sea breeze develops intensely, MYNN2.5 and MYNN3 simulate weak vertical strength of sea breeze, while ACM2 simulates the clearest sea breeze circulation structure of all. At 18:00 LST, the intensity of sea breeze and vertical disturbance are weaker than at 15:00 LST. ACM2, BouLac and UW simulate strong sea breeze. At 21:00 LST, sea breeze changes into land breeze and BouLac and UW simulate powerful circulation. The characteristics of potential temperature, water vapor, intensity of vertical circulation are consistent with sea breeze. ACM2 simulates strong sea breeze due to the fact that vertical mixing action is strong within the planetary boundary layer. With regard to the simulated planetary boundary layer height, ACM2 has the highest height, which is coincident with the intensity of sea breeze. Moreover, the heights of other schemes are not consistent with the sea breeze strength.
Keywords:complex topography  planetary boundary layer parameterization  surface layer parameterization  sea breeze circulation  numerical simulation
本文献已被 CNKI 等数据库收录!
点击此处可从《热带气象学报》浏览原始摘要信息
点击此处可从《热带气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号