首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure of the marine atmospheric boundary layer during two cold air outbreaks of varying intensities: GALE 86
Authors:Robert J Wayland  Sethu Raman
Institution:(1) Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, 27695 Raleigh, North Carolina, USA;(2) Present address: Technology Assessment Div., Science Application Int. Corp., 615 Oberlin Rd., 27605 Raleigh, NC, USA
Abstract:Aircraft, surface, upper air and satellite measurements have been used to observe the evolution and growth of the convective Marine Atmospheric Boundary Layer (MABL) offshore of North Carolina in close proximity to the Gulf Stream, during the intense cold air outbreak of 28 January 1986 and the moderate event of 12 February 1986, as part of the Genesis of Atlantic Lows Experiment (GALE). Air mass modification processes, driven primarily by the ocean-atmosphere exchanges of surface turbulent sensible and latent heat fluxes, caused the overlying air mass to warm and moisten as it advected over the warmer waters of the eastern United States continental shelf. Maximum observed near-surface total heat fluxes were 1045 and 811 W·m–2 over the core of the Gulf Stream, for 28 January and 12 February 1986, respectively. The observed changes in the overlying air mass occurred almost instantaneously as the ambient flow traversed different underlying SST conditions.The turbulent structure showed a buoyancy-dominated MABL below approximately 0.8z/h. However, shear was also observed to be an important production term above 0.8z/h and below 0.1z/h for the 28 January 1986 event. Dissipation of turbulent kinetic energy was the dominant destruction term in the budgets, but vertical transport of energy was a strong contributor below 0.5z/h, above which this term became a source of turbulent energy. Additionally, the normalized standard deviations of the horizontal velocity components showed a near-equal contribution to the turbulence, while the vertical velocity components displayed the characteristic mid-layer maximum profile observed for a convective, well-mixed boundary layer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号