首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Etude experimentale d'une relation entre le coefficient de frottement et le facteur de rafales en regime de vent faible et au-dessus d'une surface d'eau
Authors:C Boutin  B Boullery  J P Albignat  H Isaka
Institution:(1) Laboratoire de Dynamique et Microphysique de l'Atmosphère, Université de Clermont-Ferrand, Clermont-Ferrand, France
Abstract:In usual aerodynamic bulk formulas, the drag coefficient C d has been best estimated in the 5 to 16 m s–1 range of mean wind velocity; a value of 1.3 × 10–3 is often considered for operational use. However, in the 0 to 5 m s–1 range of mean wind velocity, corresponding to meteorological conditions of very light wind, experimental results have not resulted in any convincing agreement between various authors (Hicks et al., 1974; Wu, 1969; Kondo and Fujinawa, 1972; Mitsuta, 1973; Brocks and Krugermeyer, 1970).In the present paper, the drag coefficient is experimentally determined in conditions of very light wind and limited fetch (about 250 m). Due to this limited fetch, we have to be cautious in the extrapolation of our results to other sites. Nevertheless, some of experimental results are worth describing, considering the paucity of data in light wind conditions.Mean value and standard deviation (respectively 1.84 × 10–3 and 1.24 × 10–3) are obtained from 70 runs of 10-min duration. Mean wind velocities observed at 2 m above water surface are found to lie between 1.2 and 3.6 m s–1. Whereas this mean value is in fair agreement with C d 10 = 1.3 × 10–3, usually given for the 5 to 16 m s–1 range (Kraus, 1972), the above value for the standard deviation seems too large to be left without further analysis.A more exhaustive analysis of the 70 values obtained for C d shows that it depends on a parameter characteristic of longitudinal fluctuations of the wind velocity. A similar idea was put forward earlier by Kraus (1972). Relations between the drag coefficient and wind fluctuations may be tentatively given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% igdacaGGUaGaaGimaiaaiEdacqGHRaWkcaaIXaGaaGinaiaac6caca% aIZaGaaGinamaalaaabaGaeq4Wdm3aaSbaaSqaaiaadwhacaGGNaaa% beaaaOqaaaaaaiaawIcacaGLPaaaruqqYLwySbacfaGaa8hEaiaa-b% cacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaakiaabcca% caqGGaGaaeiiaiaabccacaqGXaGaaeOlaiaabAdacaqGGaGaaeyBai% aabccacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaakiabgsMiJkqa% dwhagaqeamaaBaaaleaacaaIYaaabeaakiabgsMiJkaaiodacaGGUa% GaaGOnaiaab2gacaqGGaGaae4CamaaCaaaleqabaGaaeylaiaabgda% aaaaaa!634E!\C_{d2} = \left( { - 1.07 + 14.34\frac{{\sigma _{u'} }}{{}}} \right)x 10^{ - 3} {\text{ 1}}{\text{.6 m s}}^{{\text{ - 1}}} \leqslant \bar u_2 \leqslant 3.6{\text{m s}}^{{\text{ - 1}}} \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWGKbGaaGOmaaqabaGccqGH9aqpdaqadaqaaiabgkHiTiaa% iodacaGGUaGaaGioaiaaiAdacqGHRaWkcaaIZaGaaiOlaiaaiodaca% aI2aGaam4raaGaayjkaiaawMcaaerbbjxAHXgaiuaacaWF4bGaa8hi% aiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZaaaaOGaaeilaa% aa!4B42!\C_{d2} = \left( { - 3.86 + 3.36G} \right)x 10^{ - 3} {\text{,}}\] where sgr uprime/\-u 2 and G, respectively, represent the standard deviation of uprime normalized with \-u 2 and the longitudinal gust factor quoted in Smith (1974).We have established a relationship between these fluctuation parameters and the stability as given by a bulk layer Richardson number (between 0 and 2 m). These relations are given by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq% aHdpWCdaWgaaWcbaGaamyDaiaacEcaaeqaaaGcbaGabmyDayaaraWa% aSbaaSqaaiaaikdaaeqaaaaakiabg2da9iaaicdacaGGUaGaaGymai% aaikdacqGHRaWkcaaIZaGaaiOlaiaaiIdacaaI1aGaaeiiaiaabkfa% caqGPbWaaSbaaSqaaiaabcdacaqGTaGaaeOmaaqabaaaaa!4802!\\frac{{\sigma _{u'} }}{{\bar u_2 }} = 0.12 + 3.85{\text{ Ri}}_{{\text{0 - 2}}} \] and G=1.35+14.56 Ri0–2. The increase in gustiness with stability is in qualitative agreement with Goptarev (1957)'s experimental results.In spite of the high-level correlation between C d and sgr uprime/\-u 2(G) on the one hand and between sgr uprime/\-u 2(G) and Ri0–2on the other hand, we found a poor relationship between C d and Ri0–2. It is worth noting too that the trend observed here for C d to increase with stability is in complete disagreement with the usual theoretical expectation for C d to decrease with increasing layer stability above water.

E.R.A. du C.N.R.S. norder 259.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号