首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical study of multiple vortex self-organization as forced by mesoscale topography
Authors:Z Luo  C Liu
Institution:(1) School of Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, P.R. China;(2) Chinese Academy of Meteorological Sciences (CAMS), State Key Labaratory of Severe Weather, Beijing, P.R. China
Abstract:Summary There exists a common observational phenomenon over the offshore areas of the northwest Pacific, that is, when several mesoscale vortices evolve suddenly into a larger scale typhoon-like vortex within one day, often with serious consequences. In this paper a series of numerical experiments has been designed and performed to emulate this evolution. The model is based on the Charney-Hasegawa-Mima equation, where there are around 40 initial meso-β vortices with parabolic profiles whose central positions, dimensions and intensities are all set stochastically. The self-organization process of these stochastically-distributed multiple meso-β vortices can be divided into two phases. During the first phase, a larger scale vortex similar to a typhoon-like vortex forms near the computational center through the gradual stretching and merging of adjacent meso-β vortices while there are more than 10 isolated vortices surrounding this typhoon-vortex. During the second phase, the isolated vortices are stretched and drawn into the typhoon-vortex circulation and become its spiral arms which are gradually incorporated into the inner area of the typhoon. This is then repeated as new isolated vortices are stretched and become new spiral arms until all the isolated vortices are drawn into the typhoon-vortex. The center of the self-organized typhoon-vortex rotates counterclockwise around the computational center when no topography is involved and is thus a transient vortex. When topography is present the vortex remain in the NE quadrant of the model domain, locked by the topography, and this quasi-steady vortex is thus capable of causing local disasters. Correspondence: Chongjian Liu, Chinese Academy of Meteorological Sciences (CAMS), State Key Labaratory of Severe Weather, 46 Zhongguancum South Avenue, 100081 Beijing, P.R. China
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号