首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Future trend of extreme value distributions of wintertime surface air temperatures over Korea and the associated physical changes
Authors:Kwang-Yul Kim  Ji-Won Kim  Maeng-Ki Kim  Chun-Ho Cho
Institution:1. School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-747, Korea
2. Department of Atmospheric Science, Kongju National University, Gongju, Chungnam, Korea
3. Climate Research Division, National Institute of Meteorological Research, Seoul, Korea
Abstract:Daily winter temperatures in Korea have been analyzed via CSEOF analysis. Then, each PC time series was detrended and was fitted to an AR (autoregressive) model. Based on the identified AR model, an artificial time series of arbitrary length can be generated by using an arbitrary white-noise time series. In this way, one hundred new sets of PC time series were generated over the period of 1973–2058. Then, the trend for each PC time series was added back to the artificial PC time series extending the trend until 2058. Ultimately, artificial daily winter temperatures in Korea have been constructed by using the artificial PC time series and the original loading vectors derived from the observational data. The 100 new data sets have been investigated in order to understand the winter temperature variability 50 years into the future. Regression analysis in CSEOF space shows that temperature increase in Korea is associated with increased 850-hPa air temperature over most of the Asian domain (97°-153°E × 22°-73°N) and increased 850-hPa geopotential height in the southern part of the domain. As a result, southerly and southeasterly wind anomalies develop carrying positive temperature anomalies northward and northwestward. Both the 200-hPa air temperature and geopotential height changes indicate that there will be fairly significant northward shift of the jet stream in future. The standard deviation of the 200-hPa potential vorticity increases implying that shortwave trough and henceforth baroclinic instability will increase in future. Finally, GEV (Generalized Extreme Value) distribution and GPD (Generalized Pareto distribution) distribution have been compared between the observational records and the future records of the same length. The extreme value distributions based on the synthetic datasets show that warm extreme events will be more extreme in future and cold extreme events, on the other hand, will be less extreme. This study provides an estimate of future temperatures based on the observational data and serves as an independent baseline solution for comparisons with numerical model solutions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号