首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tidal currents and mixing at the INSTANT mooring locations
Authors:Robin Robertson
Institution:University of New South Wales @ADFA, Australian Defence Force Academy, Northcott Dr., Canberra, ACT 2617, Australia
Abstract:Tides affect transport and mixing in the Indonesian Seas, impacting the throughflow and the return flow of the global thermohaline circulation. In a previous study, barotropic and baroclinic tides were simulated for the Indonesian Seas at 5 km resolution in order to characterize the tides of the region and to identify and quantify locations of tidal mixing. Baroclinic tidal velocities exceeded barotropic velocities except in shallow regions and their variability was on smaller scales. Model results agreed reasonably with observations and are consistent with the resolution. However, only four mooring locations were available for comparison. The new International Nusantara Stratification (INSTANT) data set enables a more comprehensive comparison. With the exception of Lombok Strait, the model replicated the observed INSTANT velocity spectra, falling within the 90% confidence limits of the observed spectra, both in regions of high and low baroclinic tidal activity for the band of frequencies from 0.02 cph to 0.33 cph (periods of 50–3 h, respectively), which includes the major semidiurnal and diurnal tides and several of their first harmonics. The model overestimated the semidiurnal baroclinic tides in the narrow Lombok Strait, which is not well resolved in the model. Comparisons of vertical profiles of the major axes of the tidal ellipses at the mooring sites generally reproduced the vertical pattern, although there were exceptions, such as Lombok and Ombai Straits. Rms differences between the model estimates and hourly observations for the major axes of the tidal ellipses were typically 1–8 cm s−1 in regions of high tidal activity, 1–5 cm s−1 in regions of low tidal activity, and 1–20 cm s−1 for the semidiurnal tides in Lombok and Ombai Straits. Rms errors of 1–6 cm s−1 are typical in regions of moderate baroclinic tidal activity at this model resolution (5 km). Many of the larger rms differences result from vertical discrepancies in the depths of the internal tidal beams. The local nature of the internal tides generation and beam propagation results in large differences from small vertical shifts in the beams or generation due to topographic differences between the model topography and the actual topography. In addition, the moorings experienced severe blowdown. The blowdown adds uncertainty to the depths of the instruments and introduces errors in the observational tidal analysis in magnitude of the tidal constituents, both of which contribute to rms differences. Tidal mixing was found to occur in intense local regions with strong internal tidal shear. The local regions of mixing were typically along the bottom in steep slopes and over sills. In conclusion, the tidal model was found to reproduce the kinetic energy distribution and transfer of energy from tides to other frequencies in the Indonesian Seas and to roughly replicate the observed structure and magnitude of the tidal currents. Improvements in the tidal simulations in reproducing observations are expected with increased resolution.
Keywords:INSTANT program  Indonesian Throughflow  Internal tides  Mixing  Indonesian Seas
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号