首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coupling mechanisms between equatorial waves and cumulus convection in an AGCM
Authors:Tsuneaki Suzuki  Yukari N Takayabu  Seita Emori  
Institution:aFrontier Research Center for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan;bCenter for Climate System Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan;cNational Institute for Environmental Studies, 16-2 Ogawa, Tsukuba, Ibaraki 305-8506, Japan
Abstract:In this study, we focused on the difference in appearances of the convectively coupled equatorial waves (CCEWs) in a simulation with the CCSR/NIES/FRCGC AGCM, between two experiments, one with and the other without implementation of the convective suppression scheme (CSS) in the prognostic Arakawa–Schubert cumulus parameterization. Realistic CCEW modes, i.e., Kelvin, Rossby, mixed Rossby-gravity (MRG), and n = 0 eastward inertio-gravity (EIG) wave modes, were reproduced in the with-CSS experiment, while only Rossby-wave-like signals appeared in the without-CSS experiment.By comparing the structures of the Kelvin wave mode and the Rossby wave mode in two runs, it was suggested that the structural difference between these two modes in conjunction with the difference in the controlling factor of cumulus convection determines the CCEW features. The CSS implemented here is such that cumulus convection is suppressed until the cloud-layer-averaged relative humidity exceeds the threshold of 80%. In the without-CSS model, only Rossby wave modes are coupled with the convection. This is because CAPE controls cumulus convection in this model, and the larger frictional convergence of Rossby wave mode prepares CAPE to generate favorable condition for cumulus convection. In the case of the with-CSS model, on the other hand, cumulus convection is largely controlled by the humidity in the free atmosphere. The convergence associated with the equatorial waves can produce the moisture anomaly to overcome the relative humidity threshold, and maintains the favorable condition for cumulus convection once it starts. In this case, not only Rossby waves but also Kelvin, MRG, and n = 0 EIG waves are reproduced more realistically. It is suggested that inclusion of some kind of mechanism connecting the free tropospheric moisture with the convection under the condition of abundant convective available potential energy could be a key factor for realistic coupling between large-scale atmospheric waves and convection.
Keywords:General circulation model  Cumulus parameterization  Cumulus convection  Equatorial wave  Kelvin wave  Rossby wave
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号