首页 | 本学科首页   官方微博 | 高级检索  
     检索      

大气扰动分解技术在副高边缘大暴雨落区精细化分析中的应用
引用本文:张楠,陈宏,杨晓君,韩婷婷.大气扰动分解技术在副高边缘大暴雨落区精细化分析中的应用[J].气象科学,2023,43(6):820-828.
作者姓名:张楠  陈宏  杨晓君  韩婷婷
作者单位:中国气象局流域强降水重点开放实验室/暴雨监测预警湖北省重点实验室 中国气象局武汉暴雨研究所, 武汉 430205;天津市海洋气象重点实验室, 天津 300074;天津市气象台, 天津 300074;天津市海洋气象重点实验室, 天津 300074;天津市人工影响天气办公室, 天津 300074
基金项目:国家重点研发计划资助项目(2023YFC3007703);中国气象局流域强降水重点开放实验室(2023BHR-Y11);天津市自然科学基金青年资助项目(18JCQNJC09300);中国气象局复盘总结专项(FPZJ2023-005,FPZJ2023-009);中国气象局预报员专项(CMAYBY2020-009;CMAYBY2016-006);天津市气象局课题(201615ybxm11)
摘    要:利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)再分析资料,基于大气扰动分解技术,对2012年7月华北东部两次副高边缘大暴雨事件进行扰动分析。结果表明:边界层及对流层低层扰动辐合中心与副高边缘大暴雨中心有较好地对应关系;扰动锋区和扰动比湿大值区(4 g·kg-1)叠加的区域与大暴雨落区相对应,与切变线类暴雨不同,副高边缘暴雨中心并不是出现在冷暖空气対峙扰动(0 ℃线)的位置,而是发生在扰动锋区内的暖区一侧(扰动温度0 ℃以南);两次过程均存在自南向北的水汽通道,且水汽在输送过程中不断得到抬升,大暴雨落区对应的扰动水汽通量散度中心分别达到-6.8×10-8g·cm-2·hPa-1·s-1和-11.9×10-8g·cm-2·hPa-1·s-1,为大暴雨的形成提供了较好地水汽条件。

关 键 词:大气扰动分解技术  副高边缘  扰动辐合中心  扰动锋区  扰动水汽通量辐合中心
收稿时间:2019/11/8 0:00:00
修稿时间:2022/4/23 0:00:00

The application of atmospheric disturbance decomposition technology in the detailed analysis of the heavy rainstorm area at the edge of subtropical high
ZHANG Nan,CHEN Hong,YANG Xiaojun,HAN Tingting.The application of atmospheric disturbance decomposition technology in the detailed analysis of the heavy rainstorm area at the edge of subtropical high[J].Scientia Meteorologica Sinica,2023,43(6):820-828.
Authors:ZHANG Nan  CHEN Hong  YANG Xiaojun  HAN Tingting
Institution:China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China;Tianjin Key Laboratory for Oceanic Meteorology, Tianjin 300074, China;Tianjin Meteorological Observatory, Tianjin 300074, China;Tianjin Key Laboratory for Oceanic Meteorology, Tianjin 300074, China;Tianjin Weather Modification Office, Tianjin 300074, China
Abstract:Based on atmospheric disturbance decomposition technology, ECMWF reanalysis data was used to analyze two heavy rain events on the edge of subtropical high in eastern North China in July 2012. Results show that there is a good correspondence between the anomalous convergence center at the boundary layer or in the lower troposphere and the center of heavy rain on the northwest edge of the subtropical high. The superimposed area between the anomalous front area and the larger anomalous specific humidity (4 g·kg-1) area corresponds to the rainstorm area. Unlike the rainstorm caused by shear line, the rainstorm center on the edge of the subtropical high does not appear in the position between cold and warm air, where the anomalous temperature is zero, but in the warm side of the anomalous front area(to the south of anomalous temperature zero line). Vapor transported from south to North, and water vapor in the transport process has been continuously lifted. The convergence center of anomalous water vapor flux corresponding to the heavy rain area reaches -6.8×10-8g·cm-2·hPa-1·s-1 and -11.9×10-8g·cm-2·hPa-1·s-1, respectively,which provides a favorable condition of water vapor accumulation for the formation of heavy rain.
Keywords:atmospheric disturbance decomposition technology  the edge of subtropical high  anomalous convergence center  the anomalous front area  the convergence center of anomalous water vapor flux
点击此处可从《气象科学》浏览原始摘要信息
点击此处可从《气象科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号