首页 | 本学科首页   官方微博 | 高级检索  
     检索      

中国区域MODIS陆上气溶胶光学厚度产品检验
引用本文:李晓静,张鹏,张兴赢,孙凌,齐瑾,张艳.中国区域MODIS陆上气溶胶光学厚度产品检验[J].应用气象学报,2009,20(2):147-156.
作者姓名:李晓静  张鹏  张兴赢  孙凌  齐瑾  张艳
作者单位:中国气象局中国遥感卫星辐射测量和定标重点开放实验室 国家卫星气象中心, 北京 100081
基金项目:中国气象局气候变化专项项目,中国气象局新技术推广重点项目,国家重点基础研究发展规划(973计划) 
摘    要:以我国MODIS共享网站积累的MODIS L1B数据和美国威斯康辛大学提供的IMAPP软件包气溶胶产品软件为基础, 经过产品运行本地化改进处理, 在国家卫星气象中心建立了气溶胶产品业务化生成和发布机制。为支持气溶胶遥感产品算法改进以及潜在用户对产品的合理应用, 给出对国家卫星气象中心运行的MODIS气溶胶遥感产品质量检验分析结果。利用2005年1月— 2007年5月AERONET地基气溶胶监测网的L2.0级气溶胶光学厚度产品作为真值, 用它匹配MODIS陆上气溶胶光学厚度产品开展检验。检验结果表明:以卫星过境前后30min地基观测时间平均值匹配地基站点位置10 km半径范围内的卫星反演结果空间平均值开展检验, 总体样本的气溶胶光学厚度均方根误差约为0.25;满足产品误差要求 (±0.05±0.20τ) 的样本占总样本数的44%; 气溶胶光学厚度反演结果精度具有季节和地域差异, 干季(秋、冬、春)的气溶胶光学厚度误差较小, 而雨季气溶胶光学厚度误差较大, 云是雨季气溶胶光学厚度反演结果误差较大的主要影响因素。

关 键 词:MODIS    气溶胶光学厚度    误差检验    数据共享
收稿时间:2008-04-16
修稿时间:8/4/2008 12:00:00 AM

Validation of Aerosol Optical Thickness Product over China with MODIS Data Operated at NSMC
Li Xiaojing,Zhang Peng,Zhang Xingying,Sun Ling,Qi Jin and Zhang Yan.Validation of Aerosol Optical Thickness Product over China with MODIS Data Operated at NSMC[J].Quarterly Journal of Applied Meteorology,2009,20(2):147-156.
Authors:Li Xiaojing  Zhang Peng  Zhang Xingying  Sun Ling  Qi Jin and Zhang Yan
Institution:Key Laboratory of Radiometric Ca libration and Validation f or Environmental Satellites, National S atellite Meteorological Center, China Meteorological Administration, Beij ing 100081
Abstract:The aerosol optical thickness producing software provided by Cooperative Institute for Meteorological Satellite Studies (CIMSS) of University of Wisconsin has been modified and operationally run at NSMC. And the MODIS/AOT product is shared at National MODIS Data Center.The MODIS aerosol optical thickness product has been validated with AERONET Level 2.0 aerosol optical thickness product so that the product can be improved and popularized.The MODIS/AOT product from January 2005 to May 2007 has been matched with L2.0 AOT product from AERONET stations in east Asia during the same period. The spacial average value of the MODIS/AOT within the 10 km distance from the site of AERONET station have been compared with the temporal average value of the AERONET/AOT within 30 minutes period the satellite passing the station. The validation result show that RMSE of all validation AOT samples over land is near 0.25, and about forty-four percent of the test samples meet the expected uncertainty of±0.05±0.20τ.The precision of MODIS/AOT is different according to seasons and areas.Usually, RMSE of MODIS/AOT is smaller at drought season than that at rain season. Cloud is the main factor impacted on the large RMSE at rain season. At south evergreen vegetable area, MODIS/AOT RMSE is better than that of north seasonal changed area.MODIS/AOT at 658nm has obviously systematical over-retrieval since the surface reflectivity of red band is over-estimated. Absolute error of MODIS/AOT at 466nm retrieved with blue band data has about half of the positive value and RMSE of MODIS/AOT at 466nm is higher than that of 658nm. The cause is that MODIS/AOT obtained with blue band is more sensitive for aerosol model used in retrieval process than it done with red band, though the estimated surface reflectivity of blue band has smaller error than that of red band. In a word, error from aerosol model is main cause of high random error of MODIS/AOT at 466nm.Correlation among the surface reflectivity at 0.47, 0.66 μm and 2.1μm bands are discussed using selected 79 items of vegetation spectrum reflectivity observed in China by LRCVES/CMA, in order to analyze effects of surface reflectivity for retrieval MODIS/AOT and get some ideas that could improve the precision of MODIS/AOT.The vegetation spectrum reflectivity is obtained from different vegetations and from different growing period of the same vegetation.The analysis show that there is high linear correlation (86.43%) between reflectivity at 0.47 μm bands and reflectivity at 0.66 μm bands for the vegetations.And linear correlation between vegetation reflectivity at 2.1 μm and vegetation reflectivity at 0.66 μm is 68.58%. Linear correlation between vegetation reflectivity at 2.1 μm and vegetation reflectivity at 0.47 μm is 59.79%. It can be concluded that the scheme which decides vegetation surface reflectivity of two visible bands in algorithm of Collection 5 MODIS aerosol products agrees well with the statistics, and is instrumental for algorithm of AOT retrieval with other similar satellite sensors.
Keywords:MODIS
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号