首页 | 本学科首页   官方微博 | 高级检索  
     检索      

一个观测冰核的15 L混合云室
引用本文:杨绍忠,楼小凤,黄庚,酆大雄.一个观测冰核的15 L混合云室[J].应用气象学报,2007,18(5):716-721.
作者姓名:杨绍忠  楼小凤  黄庚  酆大雄
作者单位:中国气象科学研究院中国气象局云雾物理重点开放实验室, 北京 100081
摘    要:小型混合云室常用于自然冰核浓度的观测和人工冰核成核率的检测。使用表明:由于受云室容积、造雾方法和操作程序等因素的影响, 检测结果有很大差异, 难以相互比较。为提高检测数据的可信性, 设计并制作了15 L混合云室。云室由F22压缩机系统制冷, 最低能达到-28℃。为减小云室温度的波动, 在云室外围设计有装满乙二醇-水溶液的夹套。在溶液中, 安装了1个1 kW的电加热器, 接通后可使云室升温。在夹套外, 采用发泡技术形成约10 cm厚的绝热层, 以使云室与外界绝热。云室运行时, 可通过控制压缩机和电加热器得到实验温度。此外, 为拓宽检测冰核浓度的检测范围, 设计了玻璃片接取显微镜读数和糖盘接取目测读数两种可供选择使用的冰晶观测方法, 前者在冰晶浓度高时使用 (人工冰核), 后者在低浓度时使用 (自然冰核)。另一个重要改进是:先由一个超声雾化器产生常温雾, 而后使常温雾穿过一个低温狭缝进行预冷, 当雾温等于或低于云室温度后再进入云室。这一措施不仅避免了瞬时高度过饱和, 而且还减小了对云室温度的扰动。该云室在弹载催化剂成核率的改进实验中发挥了重要作用, 曾用它对多个人工冰核复合配方进行了检测和对比。结果表明:云室具有较好的稳定性和重复性, 整体性能优于以往的同类云室。这一结果是由于改进了提供过冷雾的设计和冰晶接取方法得到的。

关 键 词:混合云室    雾的预冷    冰晶检测
收稿时间:2006-03-23
修稿时间:2007-01-30

A 15 L Mixing Cloud Chamber for Testing Ice Nuclei
Yang Shaozhong Lou Xiaofeng Huang Geng Feng Daxiong.A 15 L Mixing Cloud Chamber for Testing Ice Nuclei[J].Quarterly Journal of Applied Meteorology,2007,18(5):716-721.
Authors:Yang Shaozhong Lou Xiaofeng Huang Geng Feng Daxiong
Institution:Key Laboratory for Cloud Physics and Weather Modification of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081
Abstract:Small mixing cloud chamber with liters cubage has been used in the observation of the nature ice nuclei and the detection of the nucleating effectiveness of artificial ice nuclei. Practical usage shows that the testing data are different due to various cubage and methods of supplying fog as well as operation procedure which lead to the difficulty to compare the results. A 15-liter mixing cloud chamber is developed to improve the creditability of data and test the ice nuclei effectiveness of "the 37 model silver iodide shell". The cloud chamber is cooled by a F22 refrigeration system.The lowest temperature within cloud chamber is down to-28℃.In order to keep the temperature stable, a jacket tank filling with glycol-water solution is designed at the cloud chamber periphery. In the glycol-water solution, a 1 kW electric heater is installed to adjust the temperature.Outside the jacket tank, a 10 mm thick cold insulation is made using frothing technology to ensure heat insulation. When the cloud chamber runs, the experiment temperatures are obtained by controlling the cooling compressor and the electric heater. In addition, a device is developed to collect ice crystals with two methods so that to extend the detect range of the ice nuclei concentration. Glass slice is used by one of the methods to collect ice crystals and then the ice crystals are counted by a microscope, sugar plate is used by another method to collect ice crystals and then they are counted by naked eye. The two methods can be used alternatively according to the needs in experiment. The former is often used if the ice nuclei effectiveness is high (cloud seeding agents) and the latter can be used at low concentration (natural ice nuclei). Another important improvement is that the super-cooled fog can be supplied to ensure the nucleation full of the ice nuclei in cloud chamber. At first fog with normal temperatures is generated by an ultrasonic atomizer and passes through a low temperature narrow access so as to arrive at supercooled degree. And then it enters the chamber after the temperature of super-cooled fog equals or is under the mid temperature of cloud chamber. Thus the effect of instantaneous high super-saturation is avoided in this technology and the temperature is not disturbed. In order to improve the ice nuclei effectiveness of the cloud seeding agents carried by shell, several composite formulations are tested with the cloud chamber. The results show that the cloud chamber has a better stability and reproducibility than other small mixing cloud chambers. The better performance should be ascribed to the design of supplying super-cooled fog and the improvement of ice crystals collecting method.
Keywords:mixing cloud chamber  pre-cooled fog  ice crystals detect
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号