首页 | 本学科首页   官方微博 | 高级检索  
     检索      

水分胁迫/复水对谷子光合特性及产量影响
引用本文:任传友,姜卓群,苏小琁,米前川,王婧,李玥,高西宁.水分胁迫/复水对谷子光合特性及产量影响[J].应用气象学报,2021,32(4):456-467.
作者姓名:任传友  姜卓群  苏小琁  米前川  王婧  李玥  高西宁
作者单位:沈阳农业大学农学院, 沈阳 110866
摘    要:以谷子品种大金苗为研究对象,采用遮雨棚控水的大田试验方法,比较孕穗开花期和灌浆期水分胁迫/复水对叶片光合特性及产量影响,分析光合速率的限制因素,阐述光合速率、水分利用效率与产量的协同关系。结果表明:水分胁迫会导致谷子光合速率和产量下降,水分利用效率提高,随胁迫增强和持续时间延长,光合速率和产量下降幅度增大;水分胁迫后复水后,光合性能有所恢复,光合作用可产生补偿效应,水分胁迫越强和持续时间越长,补偿效应越低;轻度和持续时间短的水分胁迫,光合速率降低主要由气孔因素决定,随胁迫增强和持续时间延长,非气孔限制逐渐成为光合速率下降的主要原因;与孕穗开花期相比较,灌浆期水分胁迫对光合速率的影响更大且复水后光合性能恢复能力更低,光合速率与产量的协同关系更明显,产量对灌浆期水分胁迫更敏感。

关 键 词:谷子    水分胁迫/复水    光合速率    产量    补偿效应
收稿时间:2021-03-20

Effects of Water Stress/Rewatering on Leaf Photosynthetic Characteristics and Grain Yield of Foxtail Millet
Institution:College of Agronomy, Shenyang Agricultural University, Shenyang 110866
Abstract:Foxtail millet behaves strong drought resistance, but its photosynthesis process and grain yield are restricted by drought. The effects of water stress/rewatering on photosynthetic characteristics and yield of foxtail millet are studied through field water control experiment at booting and flowering stage and grain filling stage. The restraint factor on photosynthesis rate and the follow-up impact on grain yield are expounded, which may provide guidance for foxtail millet grain yield assessment and field water management under drought condition. The results are as follows: Water stress can lead to the decrease of photosynthetic rate and grain yield of characterized by larger decrease amplitude with the increase of stress intensity and duration, and increasing water use efficiency is the main survival strategy. The effect of water stress/rewatering on foxtail millet yield at grain filling stage is more obvious than that at booting and flowering stage, characterized by 22.1% production loss under 14-day mild water stress and 47.1% for FH-21 treatment group. After rewatering, photosynthesis performs compensation effect, and the photosynthetic capacity is recovered to some extent. The recovery of photosynthesis ability is lower when the the water stress intensity is stronger and the water stress duration is longer, and the recovery of photosynthetic capacity at grain filling stage is weaker than that at booting and flowering stage. Under mild and short duration water stress, the decrease of photosynthetic rate is mainly determined by stomatal factors, and the non-stomatal restriction gradually becomes the main cause for the decrease of photosynthetic rate with the increase of water stress intensity and the extension of duration. Mild negative effects of water stress on grain yield for 7 and 14 days, and severe effects for 7 days can be partially offset by the compensating effect after rewatering to some extent at booting and flowering stage, so the final effect on grain yield is not significant. In comparison, the effect of water stress on photosynthetic rate is larger, and the recovery of photosynthetic is not as good after rewatering at the grain filling stage. The formation of grain yield is more sensitive to water stress at the grain filling stage, for the closer synergistic relationship between photosynthetic rate and ultimate grain yield. The results reveal that a mild or short-term water deficit can be made up by rewatering, when the water use efficiency and photosynthesis rate will rise, and stable foxtail millet grain yield can be obtained. This can improve sustainable development by allowing deficit irrigation and water-saving agricultural practices. These critical information for optimizing water management practices is beneficial for foxtail millet sustainable development, particularly under warmer and drier climate in the future in the northern China.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号