首页 | 本学科首页   官方微博 | 高级检索  
     检索      

CAM5模式中两气溶胶模块的评估
引用本文:李鑫,刘煜.CAM5模式中两气溶胶模块的评估[J].应用气象学报,2013,24(1):75-86.
作者姓名:李鑫  刘煜
作者单位:中国气象科学研究院,北京 100081
基金项目:国家重点基础研究计划项目(2011CB403406),公益性行业(气象)科研专项(GYHY200906020),中国气象科学研究院基本科研业务费重点项目(2009Z001)
摘    要:公共大气模式 (CAM) 被广泛用于气候变化研究中,其5.0版中包含两个气溶胶模块MAM3和MOZART。利用AeroCom (2000年) 多模式中值、IMPROVE (1988—2005年) 和EMEP (2002—2008年) 站点资料对两模块进行了评估。结果表明:MAM3和MOZART模块都能很好地模拟硫酸盐气溶胶的季节变化, 与观测资料相比,模拟结果均在夏季偏高, 相关系数均在0.89左右,2倍误差内。两模块能较好地模拟黑碳气溶胶的时空分布特征, 与观测资料相比,模拟结果偏低,相关系数均在0.62左右, 排放源偏小而清除率偏大是造成黑碳气溶胶偏低的主要原因。两模块对有机碳气溶胶的模拟结果差别较大,大部分站点在3倍误差内,MAM3的结果偏高92.1%,MOZART则偏低58.1%;两模块一次有机碳的结果接近,差异主要源自对二次有机碳的模拟。两模块模拟的海盐气溶胶偏大,这主要是清除率偏小造成的。两模块采用相同的起沙机制,但起沙系数有差异, MAM3的沙尘源强偏大近两倍,模拟总量较大;MOZART的沙尘源强则偏低40%左右,模拟沙尘总量较低。即模式中气溶胶的输送和扩散过程偏弱,说明清除机制还有待改进。

关 键 词:CAM5    气溶胶    气候效应
收稿时间:3/1/2012 12:00:00 AM

Assessment of Two Aerosol Modules of CAM5
Li Xin and Liu Yu.Assessment of Two Aerosol Modules of CAM5[J].Quarterly Journal of Applied Meteorology,2013,24(1):75-86.
Authors:Li Xin and Liu Yu
Institution:Chinese Academy of Meteorological Sciences, Beijing 100081
Abstract:The Community Atmosphere Model (CAM) is widely employed in research of climate simulation and climate change. The latest version 5.0, provides two modules to simulate atmosphere aerosol, named MAM3 and MOZART, respectively. Several main atmosphere aerosols are simulated by these two modules, and the simulated surface concentrations of these aerosols are examined by Interagency Monitoring of Protected Visual Environments Program (IMPROVE) and European Monitoring and Evaluation Program (EMEP). The simulated global distributions of aerosol column concentration, as well as aerosol global budgets are compared with median model results on AeroCom website.Both MAM3 and MOZART modules can capture the seasonal distribution of sulfate aerosol; the simulated surface concentrations are in reasonable agreement with observations, although the values in summer are usually high. The correlation coefficients between models and observations for two modules are both around 0.89. Also, both MAM3 and MOZART can capture spatial and temporal distribution of black carbon aerosol. However, these two modules both underestimate surface concentration of black carbon by a factor of 2—3. The correlation coefficients between models and observations for two modules are both around 0.62, which are believed to be caused by smaller emission fluxes and higher rates of wet removal. The two modules have large difference in simulating organic matter, both having a bias by a factor of 2—3. MAM3 overestimates surface concentrations of organic matter with a normalized mean bias of 92.1%, while MOZART makes an underestimation of 58.1%. It's found that both of these biases usually happen in summer and autumn. A separate analysis demonstrates that the primary organic matter simulated by these two modules are very close, while MAM3 and MOZART have serious differences on simulation of the secondary organic carbon (SOC), which primarily contributes to the bias of total organic matter. Sea salt global budgets by MAM3 and MOZART are close, but the total content of sea salt is larger than median model results on AeroCom. The most likely cause is that lower rates of dry removal and wet removal in the CAM5. With similar mechanism but different emission factor, the two modules perform differently in simulating mineral dust; flux of mineral dust emission in MAM3 is nearly three times as large as that in median model results on AeroCom, and thus overestimates the total content, while MOZART underestimates mineral dust burden, because its emission flux is 40% smaller than that in median model results on AeroCom.According to the comparison in global distribution and global budget, it indicates that CAM5 has a weaker intensity of aerosol translation and diffusion, thus, the removal mechanism should be improved.
Keywords:CAM5  aerosol  climate effect
本文献已被 万方数据 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号