首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High resolution simulations of January and July climate over the western Alpine region with a nested Regional Modeling system
Authors:M R Marinucci  F Giorgi  M Beniston  M Wild  P Tschuck  A Ohmura  A Bernasconi
Institution:(1) Swiss Federal Institute of Technology, GGI-ETH, Zurich, Switzerland;(2) National Center for Atmospheric Research (NCAR), Boulder, USA;(3) Centro Svizzero di Calcolo Scientifico, Manno, Switzerland
Abstract:Summary High resolution January and July present day climatologies over the central-western Alpine region are simulated with a Regional Climate Model (RegCM) nested within a General Circulation Model (GCM). The RegCM was developed at the National Center for Atmospheric Research (NCAR) and is run at 20 km grid point spacing. The model is driven by output from a ldquopresent dayrdquo climate simulation performed with the GCM ECHAM3 of the Max Planck Institute for Meteorology (MPI) at T106 resolution (~ 120 km). Five January and July simulations are conducted with the nested RegCM and the results for surface air temperature and precipitation are compared with a gridded observed dataset and a dataset from 99 observing stations throughout the Swiss territory. The driving ECHAM3 simulation reproduces well the position of the northeastern Atlantic jet, but underestimates the jet intensity over the Mediterranean. Precipitation over the Alpine region in the ECHAM3 simulation is close to observed in January but lower than observed in July. Compared to the driving GCM, the nested RegCM produces more precipitation in both seasons, mostly as a result of the stronger model orographic forcing. Average RegCM temperature over the Swiss region is 2–3 degrees higher than observed, while average precipitation is within 30% of observed values. The spatial distribution of precipitation is in general agreement with available gridded observations and the model reproduces the observed elevation dependency of precipitation in the summer. In the winter the simulated elevation of maximum precipitation amounts is lower than observed. Precipitation frequencies are overestimated, while precipitation intensities show a reasonable agreement with observations, especially in the winter. Sensitivity experiments with different cumulus parameterizations, soil moisture initialization and model topography are discussed. Overall, the model performance at the high resolution used here did not deteriorate compared to previous lower resolution experiments.The National Center for Atmospheric Research is sponsored by the National Science Foundation.With 11 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号