首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical analysis of a cylinder moving through rate-dependent undrained soil
Authors:Hongxia Zhu  Mark F Randolph
Institution:Centre for Offshore Foundation Systems (M053), The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
Abstract:Geo-hazard assessment of the potential damage to a pipeline caused by a submarine landslide requires a quantitative model to evaluate the impact forces on the pipeline. In contrast with typical geotechnical problems, the strain rate within the fast moving, flow-like submarine landslide is typically far higher, which will lead to enhancement of the soil strength and therefore result in larger impact forces. Generally, there are two possible predictive frameworks for strain-rate dependence: a fluid dynamics framework and a geotechnical framework. By comparison of common rheological models adopted in these two different approaches, a unified additive power-law model, a normalised form of the Herschel-Bulkley model from fluid mechanics, is explored in this paper. This model has been used in conjunction with a large deformation finite element approach to investigate the undrained limiting loads on a cylinder moving steadily through inertia-less soft rate-dependent material, in order to quantify the strain-rate effects.The flow mechanism and the effects of the shear-thinning index and Oldroyd number on the shear zones are explored. The calculated resistance factors are compared with the drag coefficients obtained from computational fluid dynamics analysis. The average rate of strain experienced by the soil flowing past the cylinder is estimated for a given flow velocity and an expression in the form of a conventional bearing capacity equation, but with shear strength linked directly to the normalised flow velocity, is proposed to predict the magnitude of the viscous force exerted by the debris flow.
Keywords:Strain rate  Clay  Viscosity  Plasticity  Large deformation  Finite element analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号