首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Learning from data for wind-wave forecasting
Authors:Ahmadreza Zamani  Dimitri Solomatine
Institution:a Department Mechanical Engineering, Isfahan University of Technology, Isfahan 84156, Iran
b International Institute for Infrastructural, Hydraulic and Environmental Engineering, 2601 DA Delft, The Netherlands
c Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
Abstract:Along with existing numerical process models describing the wind-wave interaction, the relatively recent development in the area of machine learning make the so-called data-driven models more and more popular. This paper presents a number of data-driven models for wind-wave process at the Caspian Sea. The problem associated with these models is to forecast significant wave heights for several hours ahead using buoy measurements. Models are based on artificial neural network (ANN) and instance-based learning (IBL) .To capture the wind-wave relationship at measurement sites, these models use the existing past time data describing the phenomenon in question. Three feed-forward ANN models have been built for time horizon of 1, 3 and 6 h with different inputs. The relevant inputs are selected by analyzing the average mutual information (AMI). The inputs consist of priori knowledge of wind and significant wave height. The other six models are based on IBL method for the same forecast horizons. Weighted k-nearest neighbors (k-NN) and locally weighted regression (LWR) with Gaussian kernel were used. In IBL-based models, forecast is made directly by combining instances from the training data that are close (in the input space) to the new incoming input vector. These methods are applied to two sets of data at the Caspian Sea. Experiments show that the ANNs yield slightly better agreement with the measured data than IBL. ANNs can also predict extreme wave conditions better than the other existing methods.
Keywords:ANN  Data-driven models  Instance-based learning  Wind-wave
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号