首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nearshore directional wave measurements by surface-following buoy and acoustic Doppler current profiler
Authors:Paul A Work  
Institution:aSchool of Civil and Environmental Engineering, Georgia Institute of Technology, 210 Technology Circle, Savannah, GA 31407-3039, USA
Abstract:Directional energy spectra of nearshore surface waves were measured for a 3-year period (2004–2007) at a site with mean depth 14 m and mean tidal range 2.1 m. Triaxys surface-following wave buoys reported hourly directional wave energy spectra and wave parameters near the offshore end of the Savannah River Entrance Channel, Georgia, USA. An acoustic Doppler current profiler (ADCP) was located beside the wave buoy for 3 months. Directional and non-directional surface wave energy spectra and the corresponding bulk wave parameters (height, period, and direction) are compared for the two systems. Most parameters derived from the spectra agree closely; the most significant differences were found at the upper and lower frequency measurement limits, where signal-to-noise ratios were lower. The wave buoy consistently reports a small amount of energy below 0.05 Hz that does not appear in the ADCP-derived spectra and does not appear to be related to the mooring system. This leads to larger mean and peak periods reported by the buoy. All directional spectra were computed using the Maximum Entropy Method for both instruments, but the buoy, with spectra derived from six independent time series, provides lower directional resolving power than the ADCP, which utilizes twelve time series. Both systems gave similar results defining mean and peak wave directions, with the primary difference being that the ADCP indicates energy to be more tightly concentrated around the peak direction.
Keywords:Ocean surface waves  Wave measurement  Wave buoy  Triaxys  Directional wave energy spectra  Acoustic Doppler current profiler  Savannah River Entrance Channel
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号