首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Defining dynamic pelagic habitats in oceanic waters off eastern Australia
Authors:AJ Hobday  JW YoungC Moeseneder  JM Dambacher
Institution:a Wealth from Oceans National Research Flagship, CSIRO Marine and Atmospheric Research, Hobart, Tasmania 7001, Australia
b CSIRO Marine and Atmospheric Research, Cleveland, Queensland
c CSIRO Mathematical and Information Sciences, Hobart, Tasmania 7001, Australia
Abstract:Although many species in the pelagic ocean are widespread, they are not randomly distributed. These species may have associations with particular water masses or habitats, but to best understand patterns in the ocean, these habitats must be identified. Previous efforts have produced static or seasonal climatologies, which still represent smearing over habitats. The Eastern Tuna and Billfish Longline Fishery (ETBF) targets a range of high trophic level species in oceanic waters off eastern Australia. In this study, dynamic ocean habitats in the region were identified for each month based on cluster analysis of five oceanographic variables averaged at a monthly time scale and a spatial scale of 0.5° for the period 1995-2006. A total of seven persistent habitats were identified off eastern Australia with intra and interannual variation in size and location, indicating the importance of spatial and temporal variation in the dynamics of the region. The degree to which these dynamic habitats were distinguished was tested using (i) stable isotope analysis of top fish predators caught in the region and (ii) estimates of variation in estimated abundance generated from catch data from the fishery. More precise estimates (measured as lower total CV) of isotopic values from swordfish (Xiphias gladius), yellowfin tuna (Thunnus albacares) and albacore (Thunnus alalunga) were obtained for 4 of 6 isotope comparisons using the dynamic habitat groupings, which indicate that stratifying by pelagic habitat improved precision. Dynamic habitats produced more precise abundance estimates for 7 of 8 large pelagic species examined, with an average reduction in total CV of 19% compared to when abundance was estimated based on static habitat stratification. These findings could be used to guide development of effective monitoring strategies that can distinguish patterns due to environmental variation, and in the longer term, climate change.
Keywords:Habitat characterization  East Australian Current  Habitat association  Isotope signal  Abundance estimation  Longline fishery
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号