首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids
Authors:Tal Ezer  George L Mellor
Institution:Program in Atmospheric and Oceanic Sciences, Princeton University, P.O. Box CN710, Sayre Hall, Princeton, NJ 08544-0710, USA
Abstract:Sensitivity studies with a new generalized coordinate ocean model are performed in order to compare the behavior of bottom boundary layers (BBLs) when terrain-following (sigma or combined sigma and z-level) or z-level vertical grids are used, but most other numerical aspects remain unchanged. The model uses a second-order turbulence closure scheme that provides surface and BBL mixing and results in a quite realistic climatology and deep water masses after 100 year simulations with a coarse resolution (1° × 1°) basin-scale terrain-following grid. However, with the same turbulence scheme but using a z-level grid, the model was unable to produce dense water masses in the deep ocean. The latter is a known problem for coarse resolution z-level models, unless they include highly empirical BBL schemes.A set of dense water overflow experiments with high-resolution grids (10 and 2.5 km) are used to investigate the influence of model parameters such as horizontal diffusivity, vertical mixing, horizontal resolution, and vertical resolution on the simulation of bottom layers for the different coordinate systems. Increasing horizontal diffusivity causes a thinner BBL and a bottom plume that extends further downslope in a sigma grid, but causes a thicker BBL and limited downslope plume extension in a z-level grid. A major difference in the behavior of the BBL in the two grids is due to the larger vertical mixing generated by the turbulence scheme over the step-like topography in the z-level grid, compared to a smaller vertical mixing and a more stably stratified BBL in the sigma grid. Therefore, the dense plume is able to maintain its water mass better and penetrates farther downslope in the sigma grid than in the z-level grid. Increasing horizontal and vertical resolution in the z-level grid converges the results toward those obtained by a much coarser resolution sigma coordinate grid, but some differences remain due to the basic differences in the mixing process in the BBL.
Keywords:Numerical modeling  Sigma coordinates  Ocean mixing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号