首页 | 本学科首页   官方微博 | 高级检索  
     检索      

多点液压式波浪能海水淡化系统建模与仿真
引用本文:胡 缘,杨绍辉,何宏舟,陈 沪,郑松根,张 迪.多点液压式波浪能海水淡化系统建模与仿真[J].海洋工程,2019,37(1):134-141.
作者姓名:胡 缘  杨绍辉  何宏舟  陈 沪  郑松根  张 迪
作者单位:集美大学 轮机工程学院,福建 厦门 361021,集美大学 轮机工程学院,福建 厦门 361021; 福建省能源清洁利用与开发重点实验室,福建 厦门  361021; 海洋可再生能源装备福建省高校重点实验室,福建 厦门 361021,集美大学 轮机工程学院,福建 厦门 361021; 福建省能源清洁利用与开发重点实验室,福建 厦门  361021; 海洋可再生能源装备福建省高校重点实验室,福建 厦门 361021,集美大学 轮机工程学院,福建 厦门 361021; 福建省能源清洁利用与开发重点实验室,福建 厦门  361021; 海洋可再生能源装备福建省高校重点实验室,福建 厦门 361021,集美大学 轮机工程学院,福建 厦门 361021; 福建省能源清洁利用与开发重点实验室,福建 厦门  361021; 海洋可再生能源装备福建省高校重点实验室,福建 厦门 361021,集美大学 轮机工程学院,福建 厦门 361021
基金项目:国家自然科学基金项目(51779104);福建省自然科学基金项目(2016J01247);福建省科技厅对外合作项目(2016I010003)
摘    要:为缓解淡水资源短缺及化石能源过度使用问题,提出多点液压式波浪能海水淡化系统,该系统主要由采能装置、液压传递系统与反渗透膜海水淡化设备组成。系统的采能装置采用振荡浮子式,可将波浪能转换为浮子振荡从而被液压系统吸收达到采集波浪能的目的。为了提高液压式波浪能海水淡化系统的采能效率及淡水率,利用AMEsim软件对液压传递系统进行建模与仿真,分析了蓄能器、浮子个数及波高对液压传递系统输出响应的影响。结果表明:蓄能器能够使液压马达的输出响应更加稳定;当浮子的数量增加时,液压系统达到稳定的运行状态所需的时间更短,从而有利于提高系统的效率;波高在2 m左右时,本系统的产水量达到最大。

关 键 词:波浪能  液压系统  采能效率  淡水率  海水淡化

Modeling and simulation analysis of multi-point hydraulic wave energy desalination system
HU Yuan,YANG Shaohui,HE Hongzhou,CHEN Hu,ZHEN Songgen and ZHANG Di.Modeling and simulation analysis of multi-point hydraulic wave energy desalination system[J].Ocean Engineering,2019,37(1):134-141.
Authors:HU Yuan  YANG Shaohui  HE Hongzhou  CHEN Hu  ZHEN Songgen and ZHANG Di
Institution:College of Marine Engineering, Jimei University, Xiamen 361021, China,College of Marine Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen 361021, China; Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen 361021, China,College of Marine Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen 361021, China; Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen 361021, China,College of Marine Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen 361021, China; Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen 361021, China,College of Marine Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Energy Cleaning Utilization and Development of Fujian Province, Xiamen 361021, China; Key Laboratory of Ocean Renewable Energy Equipment of Fujian Province, Xiamen 361021, China and College of Marine Engineering, Jimei University, Xiamen 361021, China
Abstract:In order to alleviate the shortage of freshwater and excessive use of fossil energy, a multi-point hydraulic wave energy seawater desalination system is proposed. The system is mainly composed of an energy collection device, a hydraulic transmission system, and a reverse osmosis membrane desalination device. The system can use multiple oscillating floats at the same time to collect wave energy at various locations on the sea surface and convert it to pressure required for reverse osmosis membrane desalination equipment. In order to improve energy efficiency and freshwater conversion rate of the hydraulic wave energy desalination system, this paper uses the AMEsim software to model and simulate the hydraulic transmission system, and the influence of the accumulator, the number of floats and the wave height on the output response of the hydraulic transmission system is analyzed. The results show that the accumulator can make the hydraulic motor output more stable, and transmission of energy in hydraulic system proportional to the number of floats; at the same time, the hydraulic system can be stabilized to achieve normal operation more quickly, which is beneficial to the efficiency improvement of the system, and the water production of this system reaches its maximum when the wave height is about 2 m.
Keywords:wave energy  hydraulic system  energy efficiency  freshwater conversion rate  desalination
本文献已被 CNKI 等数据库收录!
点击此处可从《海洋工程》浏览原始摘要信息
点击此处可从《海洋工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号