首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Near-bed particle deposition and resuspension in a cold-water coral mound area at the Southwest Rockall Trough margin,NE Atlantic
Authors:F Mienis  HC de Stigter  H de Haas  TCE van Weering
Institution:1. Royal Netherlands Institute for Sea Research, Department of Marine Geology, P.O. Box 59, 1790 AB Den Burg, The Netherlands;2. Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Paleoclimatology and Geomorphology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Abstract:Cold-water coral reefs and mounds are observed mainly on slopes and topographic highs, in areas with high current speeds. Previous investigations of the near-bed hydrodynamic regime around cold-water coral mounds at the Southwest Rockall Trough margin have revealed the presence of internal waves with a diurnal tidal frequency. Hitherto only short-term measurements existed on the particle supply to the corals and data are lacking on the seasonal variability. Bottom landers equipped with sensors recording near-bottom current dynamics were deployed at two sites in a mound area on the Southwest Rockall Trough margin, one with a dense coral cover and one without coral cover. At both sites a similar seasonal variation in internal-wave activity was recorded with high activity during winter and summer months and less dynamic conditions in spring and autumn. Increased intensity of internal-wave activity, reflected in higher average near-bottom current speed and amplitude of daily temperature fluctuations, results in higher mass fluxes as recorded in the sediment traps. On the site without coral cover, mass fluxes are two times higher, compared to the site with dense coral cover. During periods of high mass fluxes a predominance of resuspended material was observed at both sites, as indicated by reduced 210Pb activity and low organic matter concentrations. The flux of resuspended material largely masked the primary pelagic signal. However, low δ15N values in early spring and summer marked the arrival of fresh particles on both sites. A dense coral framework, baffling a large amount of particles settling between the coral branches, results in differences in particle flux, chemical composition and freshness of the trapped material. On the long term the presence of a coral framework plays a crucial role in the build-up of cold-water coral mounds.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号